首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
在D2O化学反应气条件下研究了环丙烷衍生物的H/D交换反应特性.发现了三种新的产物离子[M+1]+、[M+2]+和[M+3]+.应用碰撞诱导碎裂(CID)技术研究了这些离子的碎裂反应特性.实验结果表明三种新的产物离子是由反应物与试剂离子之间发生H/D交换反应生成的.并获得了环丙烷衍生物结构中活泼氢位置及其数量的信息.  相似文献   

4.
研究了环丙烷衍物生物在CD3OD离子体系中的H/D交换反应产物离子[M 1]^*,[M 2]^ 和[M 3]^*的碰撞诱民碎裂(CID)反应特征,实验结果表明这些产物离子是由反应物与试剂离子之间生H/D交换反应生成的,获得了环丙烷衍生物结构中活泼氢位置及其数量的信息.  相似文献   

5.
为了探索金属离子对含有不同侧链的多肽气相解离的影响, 采用质谱法研究了碱金属离子Li+, Na+, K+, Rb+和Cs+分别与丝氨酸、 亮氨酸和赖氨酸五肽(分别简写为S5, L5和K5)形成的复合物的裂解反应. 质谱定性结果表明, 5种碱金属离子均可以在气相中与丝氨酸、 亮氨酸和赖氨酸五肽形成配合比为1∶1 和2∶1的非共价复合物; 竞争反应结果表明, 随着碱金属离子半径的增加, 它们与3种五肽的结合能力逐渐减弱. 质谱定量结果表明, K+与丝氨酸、 亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104, 2.83×104和2.50×103 L/mol, 表明K+与五肽复合物的结合强度按照丝氨酸、 亮氨酸和赖氨酸的顺序依次减小. 含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明, 复合物的碎裂主要发生在骨架上, 丝氨酸五肽复合物最易碎裂, 亮氨酸五肽复合物其次, 赖氨酸五肽复合物则较难碎裂, 且3种复合物的侧链断裂情况也呈现明显差异. 此外, 研究了Na+与亮氨酸五肽复合物所产生的碎片离子, 分析了不同离子之间的来源关系, 并以Dunbar的复合物理论模型为依据, 推测在碎裂过程中, 碱金属离子可能向五肽的碳端或氮端偏移. 质谱碎片分析结果表明, 在2∶1的非共价复合物中, 第一个碱金属离子与五肽上4个酰胺键的羰基结合, 第二个碱金属离子与五肽的羧基氧原子结合.  相似文献   

6.
李智立  刘淑莹 《化学学报》1998,56(5):495-499
应用碰撞诱导解离技术, 研究了甲苯自身化学电离条件下离子-分子反应产物离子m/z 182和184的碰撞诱导解离(CID)反应特性。m/z183和184离子碎裂反应具有多种过渡态结构, 如二苯基甲烷衍生物结构、卓翁离子与甲苯形成的共价键结构、甲苯自由基离子与甲苯分子形成的π-配合物结构和苄基离子与甲苯形成的π-配合物结构。  相似文献   

7.
吸电子取代基(2-硝基)金属卟啉的轴向加合反应的研究   总被引:1,自引:0,他引:1  
本文报道了用电子吸收光谱和电化学方法系统地研究卟啉环上具有吸电子取代基(—NO_2)的四苯基卟啉[H_2TP(2-NO_2)P]的Zn、Ni、Cu、Co、Mn、Fe的配合物与一系列含N有机碱的加合作用,测定了加合常数、加合分子数,总结了吸电子基团对金属卟啉的轴向效应以及中心金属离子和卟啉环氧化还原性的影响。  相似文献   

8.
内嵌稀土元素的富勒烯化合物一稀土富勒烯Lit@CZ。是一类新型的化合物.它具有独特的“超分子结构和巨大的潜在用途,将在未来的功能材料开发中起到不可估量的作用[‘].目前关干稀土富勒烯的研究主要集中于稀土富勒烯的合成、分离、纯化、表征和理论方面.关于稀土富勒烯化  相似文献   

9.
为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+,Na+,K+,Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5,L5和K5)形成的复合物的裂解反应. 质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1 和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱. 质谱定量结果表明,K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小. 含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异. 此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移. 质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.  相似文献   

10.
提供了一种通过电喷雾电离质谱在气相中对一类有机铜配体复合物的合成方法.通过碰撞诱导解离和分子-离子反应,在离子阱质量分析器中完成了气相中铜催化的脱羧碘化反应.羧酸(RCOOH)作为反应物最终通过碰撞诱导解离技术和分子-离子反应转化为碘代烃(RI).在整个反应过程中,观察到了铜的价态变化,由此也对羧酸的脱羧碘化反应的反应机理进行了解释.同时,不同的羧酸和双氮配体也适用于该反应体系.该方法检测了一类有机铜复合物的气相反应活性,并对液相中铜催化的脱羧碘化反应的反应机理研究提供了重要信息.  相似文献   

11.
IntroductionThe intramolecular function group interaction plays an important role in gas--phase ionmolecular reactions and the fragmentation reactions of its product ionsLI--12]. The fragmenta..non reactions of the odd--electron ions of benzoic acid[13], phenylacetyleneL"], phenylsulfide[15], nitrobenzene[16j, methoxybenzaldehyde["] and acetophenone["J obviously show theOrtho effect. The fragmentation properties of the protonated molecules and the adduct ions ofo, m, p- meth oxy - ac etop he…  相似文献   

12.
Infrared multiple photon dissociation spectroscopy and hydrogen/deuterium exchange methods are used to confirm the macrocylic structure of a b(6) peptide fragment by direct comparison with a synthetically made cyclic peptide. The acetylation of the peptide N-terminus results in the inhibition of the macrocyclic formation, supporting the "head-to-tail" cyclization mechanism. Differences in hydrogen/deuterium exchange rates for macrocyclic and oxazalone structure peptide fragments are interpreted to be a result of the complex interplay of multiple basic sites in the peptide fragment, supporting the relay mechanism for deuterium exchange with CH(3)OD.  相似文献   

13.
Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.  相似文献   

14.
15.
The aim of this study was to investigate the fragmentation behavior induced by low‐energy collision‐induced dissociation (LE‐CID) of four selected antioxidants applied in lubricants, by two different types of ion trap mass spectrometers: a three‐dimensional ion trap (3D‐IT) and a linear IT (LIT) Orbitrap MS. Two sterically hindered phenols and two aromatic amines were selected as model compounds representing different antioxidant classes and were characterized by positive‐ion electrospray ionization (ESI) and LE‐CID. Various types of molecular ions (e.g. [M]+?, [M + H]+, [M + NH4]+ or [M + Na]+) were used as precursor ions generating a significant number of structurally relevant product ions. Furthermore, the phenolic compounds were analyzed by negative‐ion ESI. For both IT types applied for fragmentation, the antioxidants exhibited the same unusual LE‐CID behavior: (1) they formed stable radical product ions and (2) C? C bond cleavages of aliphatic substituents were observed and their respective cleavage sites depended on the precursor ion selected. This fragmentation provided information on the type of structural isomer usually not obtainable for branched aliphatic substituents utilizing LE‐CID. Comparing the two instruments, the main benefit of applying the LIT‐Orbitrap was direct access to elemental composition of product ions enabling unambiguous interpretation of fragmentation trees not obtainable by the 3D‐IT device (e.g. loss of isobaric neutrals). It should be emphasized that the types of product ions formed do not depend on the type of IT analyzer applied. For characterizing degradation products of antioxidants, the LIT‐Orbitrap hybrid system, allowing the determination of accurate m/z values for product ions, is the method of choice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Collision-induced dissociation (CID) of 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine was investigated using sequential tandem mass spectrometry. These adducts represent biomarkers of DNA damage linked to phenolic radicals and were investigated to gain insight into the effects of chemical structure of a C-8 modification on fragmentation pathways of modified 2'-deoxyguanosine (dG). CID in MS(2) of the deprotonated molecules of both the isomers generated the same product ion having the same m/z values. CID in MS(3) of the product ion at m/z 242 and CID in MS(4) experiments carried out on the selected product ions at m/z 225 and m/z 218 afford distinct fragmentation patterns. The conformational properties of isomeric product ions from CID showed that the ortho-isomers possess the unique ability to tautomerize through an intramolecular proton transfer between the phenolic OH group and the imine nitrogen (N7). Tautomerization of ortho-isomers to their keto-tautomers led to differences in their system of conjugated double bonds compared with either their enol-tautomer or the para-isomer. The charge redistribution through the N-7 site on the imidazole ring is a critical step in guanosine adduct fragmentation which is disrupted by the formation of the keto-tautomer. For this reason, different reaction pathways are observed for 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine. We present herein the dissociation and the gas-phase ion-molecule reactions for highly conjugated ions involved in the CID ion chemistry of the investigated adducts. These will be useful for those using tandem mass spectrometry for structural elucidation of C-8 modified dG adducts. This study demonstrates that the modification at the C-8 site of dG has the potential to significantly alter the reactivity of adducts. We also show the ability of tandem mass spectrometry to completely differentiate between the isomeric dG adducts investigated.  相似文献   

17.
Chemical mass shifts were measured in a Paul ion trap operated in the mass-selective instability scan with resonance ejection using a custom-built instrument. These shifts, which can be as much as 2%, decrease with increasing endcap electrode separation owing to changes in the higher order contributions to the electric field. They also decrease with decreasing helium buffer gas pressure. Both of these effects are analogous to those found with boundary ejection. This suggests that the previously proposed chemical mass shift mechanism based on compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures holds true also for resonance ejection. The influence of the resonance frequency on chemical mass shifts was also investigated and it is shown that at certain working points (values of the Mathieu parameter q(z) and a(z)) non-linear resonances greatly reduce the ejection delay for all ions, regardless of their chemical structures, and thus reduce the magnitude of the chemical mass shift. Energetic collisions leading to dissociation can take place at an earlier stage during the ejection process in the mass analysis scan when using resonance ejection compared with boundary ejection. This leads to even larger chemical mass shifts of fragile ions in resonance ejection. Increasing the resonance voltage amplitude can enhance this effect. The chemical mass shifts of fragile ions increase with increase in the resonance voltage amplitude, whereas negligible changes occur for structurally stable ions.  相似文献   

18.
Polychlorinated biphenyls (PCBs) exist as 209 congeners, consisting of biphenyl molecules, where the number and substitution positions of halogen atoms are known to affect industrial uses, environmental transport mechanisms, distribution, fate, and toxicity. The complexity of the problem requires accurate physicochemical studies of an increasing number of congeners in order to understand the environmental and biological processes at play. This work presents a systematic study on the thermodynamic and kinetic properties of PCBs by quadrupole ion trap mass spectrometry. A clear relationship between structure and behavior of PCBs in mass spectrometry experiments has been observed. Overall data demonstrate that di‐ortho congeners show lower thermodynamic stability and higher fragmentation rate than non/mono‐ortho. Congeners follow different fragmentation mechanisms according to the number of chlorine atoms in ortho position of the biphenyl system. Experimental kinetic curves of mono/non‐ortho and di‐ortho congeners show a strong similarity with classical first‐order kinetics curves; in particular, di‐ortho congeners follow a first‐order consecutive reaction, while mono/non‐ortho follow a first‐order parallel reaction. For each studied congener, the kinetic constant of reaction (fragmentation) has been determined. Data support environmental levels and biochemical transformations described in literature. The general picture of the PCB behavior inside a quadrupole ion trap provides the basis for the development of reliable and cost‐effective analytical methods to the determination of ultra‐low level trace of PCB congeners.  相似文献   

19.
Ion-molecule reactions between the α-phenylvinyl cation (α-PVC) and mono-substituted benzenes have been investigated using a quadrople ion-trap mass spectrometer. The α-PVC, generated by chemical ionization from phenylacetilene, was found to react selectively with mono-substituted benzenes bearing electron withdrawing groups to give the product ions [M + 103](+) and the trans-vinylating product ions [M + 25](+). To characterize the reaction products, a combination of collision-induced dissociation, isotope-labeling experiments and model compounds were used. The results indicate, in addition to direct heteroatom alkylation, high extent of ortho attack. We attributed the positional selectivity of the α-PVC to the nature of the substituent on the neutral molecule. In particular, hydroxy and amino groups promoted the alkenylation at ortho position.  相似文献   

20.
Gas phase reactions of the substituted phenide ions with methyl formate have been studied. It was found that the results of these reactions depend mainly on the basicity of the phenide ion, which is related to the presence of the electron‐accepting or electron‐donating substituents in the benzene ring. It was shown that the phenide ions substituted with electron‐withdrawing groups react with methyl formate in the gas phase in a two‐step reaction. The first step that proceeds according to the typical addition–elimination mechanism results in the formation of the anion of the respective benzaldehyde derivative with the negative charge located either in the aldehyde group (acyl anion) or in the benzene ring (phenide anion) in position ortho to an aldehyde moiety. In the second step, the preliminary‐formed anion reacts with the second molecule of methyl formate yielding formally product of the second addition–elimination reaction. Theoretical calculations as well as collision induced dissociation spectra of the model compounds suggest that this reaction proceeds according to the Tishchenko reaction mechanism yielding the respective phthalide anion. According to our knowledge, this is the first example of the Tishchenko‐type reaction in the gas phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号