首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let {D(s), s ≥ 0} be a non-decreasing Lévy process. The first-hitting time process {E(t), t ≥ 0} (which is sometimes referred to as an inverse subordinator) defined by $E(t) = \inf \{s: D(s) > t \}$E(t) = \inf \{s: D(s) > t \} is a process which has arisen in many applications. Of particular interest is the mean first-hitting time U(t)=\mathbbEE(t)U(t)=\mathbb{E}E(t). This function characterizes all finite-dimensional distributions of the process E. The function U can be calculated by inverting the Laplace transform of the function [(U)\tilde](l) = (lf(l))-1\widetilde{U}(\lambda) = (\lambda \phi(\lambda))^{-1}, where ϕ is the Lévy exponent of the subordinator D. In this paper, we give two methods for computing numerically the inverse of this Laplace transform. The first is based on the Bromwich integral and the second is based on the Post-Widder inversion formula. The software written to support this work is available from the authors and we illustrate its use at the end of the paper.  相似文献   

2.
A Toeplitz operator TfT_\phi with symbol f\phi in L(\mathbbD)L^{\infty}({\mathbb{D}}) on the Bergman space A2(\mathbbD)A^{2}({\mathbb{D}}), where \mathbbD\mathbb{D} denotes the open unit disc, is radial if f(z) = f(|z|)\phi(z) = \phi(|z|) a.e. on \mathbbD\mathbb{D}. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of \mathbbD\mathbb{D} and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators TfT_\phi with f\phi harmonic on \mathbbD\mathbb{D} and continuous on [`(\mathbbD)]{\overline{\mathbb{D}}} and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not.  相似文献   

3.
Let S{\mathcal{S}} be a set of homeomorphisms of an open interval such that the group generated by S{\mathcal{S}} is disjoint, i.e., the graphs of any two distinct functions in it do not intersect. We give necessary and sufficient conditions for the system of Abel equations
f(f(x))=f(x)+l(f),    f ? S\phi(f(x))=\phi(x)+\lambda(f),\quad f \in \mathcal{S}  相似文献   

4.
Let A denote the class of analytic functions f, in the open unit disk E = {z : |z| < 1}, normalized by f(0) = f′(0) − 1 = 0. In this paper, we introduce and study the class STn,al,m(h){ST^{n,\alpha}_{\lambda,m}(h)} of functions f ? A{f\in A}, with \fracDn,al fm(z)z 1 0{\frac{D^{n,\alpha}_\lambda f_m(z)}{z}\neq 0}, satisfying
\fracz(Dn,al f(z))¢Dn,al fm(z)\prec h(z),    z ? E,\frac{z\left(D^{n,\alpha}_\lambda f(z)\right)'}{D^{n,\alpha}_\lambda f_m(z)}\prec h(z),\quad z\in E,  相似文献   

5.
In this paper, we propose a local Whittle likelihood estimator for spectral densities of non-Gaussian processes and a local Whittle likelihood ratio test statistic for the problem of testing whether the spectral density of a non-Gaussian stationary process belongs to a parametric family or not. Introducing a local Whittle likelihood of a spectral density f θ (λ) around λ, we propose a local estimator [^(q)] = [^(q)] (l){\hat{\theta } = \hat{\theta } (\lambda ) } of θ which maximizes the local Whittle likelihood around λ, and use f[^(q)] (l) (l){f_{\hat{\theta } (\lambda )} (\lambda )} as an estimator of the true spectral density. For the testing problem, we use a local Whittle likelihood ratio test statistic based on the local Whittle likelihood estimator. The asymptotics of these statistics are elucidated. It is shown that their asymptotic distributions do not depend on non-Gaussianity of the processes. Because our models include nonlinear stationary time series models, we can apply the results to stationary GARCH processes. Advantage of the proposed estimator is demonstrated by a few simulated numerical examples.  相似文献   

6.
In this paper, we establish the general solution and investigate the generalized Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f(lx + y) + f(lx - y) = f(x + y) + f(x - y) + (l- 1)[(l+2)f(x) + lf(-x)],f(\lambda x + y) + f(\lambda x - y) = f(x + y) + f(x - y) + (\lambda - 1)[(\lambda +2)f(x) + \lambda f(-x)],  相似文献   

7.
We describe an algorithm for large-scale discrete ill-posed problems, called GKB-FP, which combines the Golub-Kahan bidiagonalization algorithm with Tikhonov regularization in the generated Krylov subspace, with the regularization parameter for the projected problem being chosen by the fixed-point method by Bazán (Inverse Probl. 24(3), 2008). The fixed-point method selects as regularization parameter a fixed-point of the function ‖r λ 2/‖f λ 2, where f λ is the regularized solution and r λ is the corresponding residual. GKB-FP determines the sought fixed-point by computing a finite sequence of fixed-points of functions ||rl(k)||2/||fl(k)||2\|r_{\lambda}^{(k)}\|_{2}/\|f_{\lambda}^{(k)}\|_{2}, where fl(k)f_{\lambda}^{(k)} approximates f λ in a k-dimensional Krylov subspace and rl(k)r_{\lambda}^{(k)} is the corresponding residual. Based on this and provided the sought fixed-point is reached, we prove that the regularized solutions fl(k)f_{\lambda}^{(k)} remain unchanged and therefore completely insensitive to the number of iterations. This and the performance of the method when applied to well-known test problems are illustrated numerically.  相似文献   

8.
Summary. We give conditions for the multivariate Böttcher equation b(f (x)) = b(x)l \beta(f (x)) = \beta(x)^{\lambda} to have a solution, in the case where f : \mathbbRd ? \mathbbRd f : \mathbb{R}^d \rightarrow \mathbb{R}^d is a polynomial with non-negative coefficients. The solution is constructed from the limit of the functional iterates -l-n logfn(x) -\lambda^{-n} \log f^{n}(x) .  相似文献   

9.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

10.
We study the pointwise convergence problem for the inverse Fourier transform of piecewise smooth functions, i.e., whether SrD f (\bx) ? f (\bx)S_{\rho D} f (\bx) \to f (\bx) as r? ¥\rho \to \infty . r? ¥\rho \to \infty . Here for \bx,\bxi ? \Rn\bx,\bxi \in \Rn SrDf(\bmx)=\dsf1(2p)n/2\intlirD [^(f)](\bxi) e\dst iá\bmx,\bxi? d\bxi . S_{\rho D}f(\bm{x})=\dsf1{(2\pi)^{n/2}}\intli_{\rho D} \widehat{f}(\bxi) e^{\dst i\langle\bm{x},\bxi\rangle} d\bxi~. is the partial sum operator using a convex and open set DD containing the origin, and rD={ r\bxi:\bxi ? D }\rho D=\left\{ \rho \bxi:\bxi\in D \right\}.  相似文献   

11.
In many regular cases, there exists a (properly defined) limit of iterations of a function in several real variables, and this limit satisfies the functional equation _boxclose)=((xz)(1-z)/z){(1-z)\phi({\bf x})=\phi(\phi({\bf x}z)(1-z)/z)}; here z is a scalar and x is a vector. This is a special case of a well-known translation equation. In this paper we present a complete solution to this functional equation when f{\phi} is a continuous function on a single point compactification of a 2-dimensional real vector space. It appears that, up to conjugation by a homogeneous continuous function, there are exactly four solutions. Further, in a 1-dimensional case we present a solution with no regularity assumptions on f{\phi}.  相似文献   

12.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

13.
Let f be a cusp form of the Hecke space \frak M0(l,k,e){\frak M}_0(\lambda,k,\epsilon) and let L f be the normalized L-function associated to f. Recently it has been proved that L f belongs to an axiomatically defined class of functions [`(S)]\sharp\bar{\cal S}^\sharp . We prove that when λ ≤ 2, L f is always almost primitive, i.e., that if L f is written as product of functions in [`(S)]\sharp\bar{\cal S}^\sharp , then one factor, at least, has degree zeros and hence is a Dirichlet polynomial. Moreover, we prove that if l ? {?2,?3,2}\lambda\notin\{\sqrt{2},\sqrt{3},2\} then L f is also primitive, i.e., that if L f = F 1 F 2 then F 1 (or F 2) is constant; for l ? {?2,?3,2}\lambda\in\{\sqrt{2},\sqrt{3},2\} the factorization of non-primitive functions is studied and examples of non-primitive functions are given. At last, the subset of functions f for which L f belongs to the more familiar extended Selberg class S\sharp{\cal S}^\sharp is characterized and for these functions we obtain analogous conclusions about their (almost) primitivity in S\sharp{\cal S}^\sharp .  相似文献   

14.
For a simply connected and normalized domain D in the plane it was proven by Pólya and Schiffer in 1954 for the fixed membrane eigenvalues
?n1 \frac1lj 3 ?n1 \frac1l(0)j\sum \limits^{n}_{1} \frac{1}{{\lambda}_j} \geq \sum \limits^{n}_{1} \frac{1}{{\lambda}^{(0)}_j}  相似文献   

15.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

16.
LetR n be n-dimensional Euclidean space with n>-3. Demote by Ω n the unit sphere inR n. ForfɛL n ) we denote by σ N δ its Cesàro means of order σ for spherical harmonic expansions. The special value l = \tfracn - 22\lambda = \tfrac{{n - 2}}{2} of σ is known as the critical one. For 0<σ≤λ, we set p0 = \tfrac2ld+ lp_0 = \tfrac{{2\lambda }}{{\delta + \lambda }} . This paper proves that
limN ? ¥ || sNd (f) - f ||p0 = 0\mathop {\lim }\limits_{N \to \infty } \left\| {\sigma _N^\delta (f) - f} \right\|p_0 = 0  相似文献   

17.
Let L p , 1 ≤ p< ∞, be the space of 2π-periodic functions f with the norm || f ||p = ( ò - pp | f |p )1 \mathord
/ \vphantom 1 p p {\left\| f \right\|_p} = {\left( {\int\limits_{ - \pi }^\pi {{{\left| f \right|}^p}} } \right)^{{1 \mathord{\left/{\vphantom {1 p}} \right.} p}}} , and let C = L be the space of continuous 2π-periodic functions with the norm || f || = || f || = maxe ? \mathbbR | f(x) | {\left\| f \right\|_\infty } = \left\| f \right\| = \mathop {\max }\limits_{e \in \mathbb{R}} \left| {f(x)} \right| . Let CP be the subspace of C with a seminorm P invariant with respect to translation and such that P(f) \leqslant M|| f || P(f) \leqslant M\left\| f \right\| for every fC. By ?k = 0 Ak (f) \sum\limits_{k = 0}^\infty {{A_k}} (f) denote the Fourier series of the function f, and let l = { lk }k = 0 \lambda = \left\{ {{\lambda_k}} \right\}_{k = 0}^\infty be a sequence of real numbers for which ?k = 0 lk Ak(f) \sum\limits_{k = 0}^\infty {{\lambda_k}} {A_k}(f) is the Fourier series of a certain function f λL p . The paper considers questions related to approximating the function f λ by its Fourier sums S n (f λ) on a point set and in the spaces L p and CP. Estimates for || fl - Sn( fl ) ||p {\left\| {{f_\lambda } - {S_n}\left( {{f_\lambda }} \right)} \right\|_p} and P(f λS n (f λ)) are obtained by using the structural characteristics (the best approximations and the moduli of continuity) of the functions f and f λ. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function f. Bibliography: 11 titles.  相似文献   

18.
Let ϕ be a function in the Wiener amalgam space W(L1)\emph{W}_{\infty}(L_1) with a non-vanishing property in a neighborhood of the origin for its Fourier transform [^(f)]\widehat{\phi}, t={tn}n ? \mathbb Z{\bf \tau}=\{\tau_n\}_{n\in {{\mathbb Z}}} be a sampling set on ℝ and VftV_\phi^{\bf \tau} be a closed subspace of L2(\mathbbR)L_2(\hbox{\ensuremath{\mathbb{R}}}) containing all linear combinations of τ-translates of ϕ. In this paper we prove that every function f ? Vftf\in V_\phi^{\bf \tau} is uniquely determined by and stably reconstructed from the sample set Lft(f)={ò\mathbbR f(t)[`(f(t-tn))] dt}n ? \mathbb ZL_\phi^{\bf \tau}(f)=\Big\{\int_{\hbox{\ensuremath{\mathbb{R}}}} f(t) \overline{\phi(t-\tau_n)} dt\Big\}_{n\in {{\mathbb Z}}}. As our reconstruction formula involves evaluating the inverse of an infinite matrix we consider a partial reconstruction formula suitable for numerical implementation. Under an additional assumption on the decay rate of ϕ we provide an estimate to the corresponding error.  相似文献   

19.
The main purpose of this paper is to prove the following result. Let R be a 2-torsion free semiprime ring with symmetric Martindale ring of quotients Q s and let q{\theta} and f{\phi} be automorphisms of R. Suppose T:R? R{T:R\rightarrow R} is an additive mapping satisfying the relation T(xyx)=T(x)q(y)q(x)-f(x)T(y)q(x)+f(x)f(y)T(x){T(xyx)=T(x)\theta (y)\theta (x)-\phi (x)T(y)\theta (x)+\phi (x)\phi (y)T(x)}, for all pairs x,y ? R{x,y\in R}. In this case T is of the form 2T(x)=qq(x)+f(x)q{2T(x)=q\theta (x)+\phi (x)q}, for all x ? R{x\in R} and some fixed element q ? Qs{q\in Q_{s}}.  相似文献   

20.
We give a formula for the one-parameter strongly continuous semigroups ${e^{-tL^{\lambda}}}We give a formula for the one-parameter strongly continuous semigroups e-tLl{e^{-tL^{\lambda}}} and e-t [(A)\tilde]{e^{-t \tilde{A}}}, t > 0 generated by the generalized Hermite operator Ll, l ? R\{0}{L^{\lambda}, \lambda \in {\bf R}\backslash \{0\}} respectively by the generalized Landau operator ?. These formula are derived by means of pseudo-differential operators of the Weyl type, i.e. Weyl transforms, Fourier-Wigner transforms and Wigner transforms of some orthonormal basis for L 2(R 2n ) which consist of the eigenfunctions of the generalized Hermite operator and of the generalized Landau operator. Applications to an L 2 estimate for the solutions of initial value problems for the heat equations governed by L λ respectively ?, in terms of L p norm, 1 ≤ p ≤ ∞ of the initial data are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号