首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
高超声速溢流冷却实验研究   总被引:2,自引:1,他引:1  
高超声速溢流冷却是一种新型的飞行器热防护方法,基本思想为:在高热流区布置溢流孔,控制冷却液以溢流方式流出,之后通过飞行器表面摩阻作用展布为液膜,形成热缓冲层以降低飞行器表面热流. 目前,溢流冷却技术还处于探索阶段,实现工程应用前还需开展大量的实验验证和机理研究工作. 本文首次开展溢流冷却的实验研究工作,采用热流测量、液膜厚度测量及液膜流动特性观测技术,搭建了完善的溢流冷却风洞实验平台,对溢流冷却热防护性能和高超声速条件下液膜流动规律进行了初步研究. 研究表明:(1) 高超声速流场中通过溢流能够在飞行器表面形成液膜并有效隔离外部高温气流,可降低飞行器表面热流率;(2) 楔面上的液膜前缘流动是一个逐渐减速的过程,增加冷却液流量液膜厚度变化不明显,但液膜前缘运动速度增大;(3) 液膜层存在表面波,在时间和空间方向发生演化,导致液膜厚度的微弱扰动;(4) 液膜层存在横向展宽现象,即液膜层宽度大于溢流缝宽度. 原因是液膜层与流场边界层条件不匹配,存在压力梯度,迫使冷却液向低压区流动,从而展宽液膜层,并且流量越高,横向展宽现象越明显.   相似文献   

2.
The flow of a liquid in thin layers is one of the hydrodynamic problems of chemistry and heat engineering. The large surface area of films and their small thickness make it possible to accelerate thermal, diffusive, and chemical processes at the gas-liquid boundary.Theoretical studies of liquid flow in a vertical descending thin layer are presented in [1–4]. In this paper we study ascending wave flows of a liquid in a thin vertical layer in contact with a gas, i.e., flows in the direction opposite the action of the force due to gravity, with account for the action of the gas on the liquid surface. Such motions are encountered when oil is extracted from strata that are saturated with gas. At some distance from the stratum the oil and gas separate: the gas travels at high velocity inside the pipe, occupying a considerable portion of the pipe, and the liquid is displaced toward the pipe walls, forming a thin film. In certain cases a wave-like interface develops between the oil and gas that travels with a velocity greater than that of the liquid but less than the average gas velocity. Similar phenomena are observed in high velocity mass exchangers.We examine the effect of the gas for both laminar and turbulent flow.Studies that neglect the effect of the gas flow on the liquid show that for waves on the film surface whose lengths are considerably longer than the average thickness of the layer, the liquid motion in the film is described by boundary layer equations in which account is taken of the mass force, i.e., the force due to gravity. With some approximation, we can assume that in accounting for the effect of the gas on the liquid the liquid flow is described by these same equations.  相似文献   

3.
We investigate the transient film boiling in the vicinity of a stagnation point on the frontal surface of a very hot blunt body which moves with a constant velocity in an incompressible viscous fluid in the presence of a vapor layer near the body surface. Within the unsteady two-phase boundary layer approximation, the equations of motion of the liquid and vapor phases are formulatedwith account of the conservation of mass, momentum, and energy on the a priori unknown phase interface. In the vicinity of the stagnation point on the body surface, the solution of the boundary layer equations is sought in the form of series in the longitudinal coordinate. For the leading terms of the series, a parabolic system of partial differential equations is obtained, which is solved numerically. The similarity parameters controlling the film boiling process are determined. On the basis of parametric numerical calculations, the dynamics of the vapor layer are investigated for the case of a plane hot body moving in water with the room pressure and temperature. In the space of governing parameters, the limits of the existence of steady and unsteady film boiling regimes are found.  相似文献   

4.
Nonlinear waves in a liquid film on a slightly inclined rigid plane are studied. A mathematical model is reduced to a system of two evolutionary equations for the layer thickness and the local fluid mass flow. In addition to viscous forces, gravity, and surface tension, the pressure difference over the layer thickness, induced by the gravity force projection on the normal to the underlying surface, is also taken into account. Spatially periodic solutions developing with time from small initial disturbances into regular nonlinear waves are considered. A spectral representation of the solution, the Galerkin method with respect to the uniform coordinate, and subsequent numerical calculation of the corresponding dynamic system on large time intervals are employed. Different variants in the space of the three governing parameters are calculated and some basic mechanisms of nonlinear dynamics of the two-dimensional waves are detected. The calculation results are compared with the existing experimental data. It is shown that the theoretical conclusions can be used to interpret and predict experiments.  相似文献   

5.
Experimental results on the behavior of a laminar–wave film of liquid nitrogen evaporating intensively under conditions of a gravitational flow on a locally heated vertical surface are described. It was found that certain heat fluxes change significantly the shape of the residual layer and increase the relative amplitude of large waves. For the first time, data are obtained on the change in the probability density of the local film thickness as a function of the heat–flux density within the range of Reynolds numbers from 32 to 103. The effect of the heat–flux density on the phase velocity and shape of large waves is shown. Heat–flux densities at which dry spots arise were determined as functions of the streamwise coordinate of the wave film of the saturated liquid.  相似文献   

6.
We present experimental results showing that large amplitude capillary waves at a liquid–vapour interface substantially enhance the interfacial heat and mass transfer. The experiments have been conducted in a circular cylinder that is partially filled with a wetting liquid of low boiling point temperature and pressurized by its vapour. The interfacial capillary waves are sub-harmonically excited by oscillating the circular cylinder at 50 Hz with forcing amplitude A in the direction normal to the liquid surface. The upper part of the test cell containing the vapour is heated to a temperature slightly below the boiling point temperature at the operating pressure. When the interface is at rest, the pressure decrease due to condensation is small. However, in the presence of interfacial capillary waves the rate of pressure decrease is substantial. The results show that the vapour condensation rate with respect to the diffusive vapour flux at an undisturbed interface, which is a Nusselt number, increases with the square of the wave amplitude that is proportional to the forcing amplitude. A model is developed that expresses the pressure variation in terms of Jacob number, the temperature gradient in the liquid at the interface and the capillary wave motion. This model allows extrapolation of the results to other fluids and configurations.  相似文献   

7.
Experimental results are presented for the growth of surface waves on a liquid film that thins as it flows under gravity over the surface of an upright circular cone. The characteristics of the mean film are calculated on the assumption of quasi-parallel flow, and the actual mean thickness found to relate very closely to that found on this basis. The development of the film was found to fall into three phases: the entry zone in which the velocity profile of the film becomes established where no waves are visible, a region of wave growth in which amplitude, wave speed, and wave length all grow, and a final region in which amplitude and wave speed decline as the film thins further although wave length continues to grow. An empirical relationship is presented which expresses the wave number at any point on the cone in terms of the flow rate and a parameter based on the local Reynolds and Weber numbers and cone angle. It was found that for a given flow rate the maximum wave amplitude was reached at a value of wave number of 0·048.  相似文献   

8.
This paper reports on an experimental study of saturated flow boiling of R134a inside a circular vertical quartz tube coated with a transparent heater. The inner diameter of the tube was 1.33 mm and the heated length 235.5 mm. The flow pattern at high vapor qualities and the dryout of the liquid film were studied using a high speed CCD camera at the mass fluxes 47.4 and 124.4 kg/m2 s in up flow at 6.425 bar. The heat fluxes ranged from 5 to 13.6 kW/m2 for the lower mass flux and from 20 to 32.4 kW/m2 for the higher mass flux.

The behavior of the flow close to dryout was found to be different at low and high mass flux. At low mass flux the location of the liquid front fluctuated with waves passing high up in the tube. In between the waves, a thin film was formed, slowly evaporating without breaking up.

At high mass flux the location of the liquid front was more stable. In this case the liquid film was seen to break up into liquid streams and dry zones on the tube wall.  相似文献   


9.
A theoretical study of forced convective film condensation inside vertical tubes is presented. We propose a unified procedure for predicting the pressure gradient and condensation heat transfer coefficient of a vapor flowing turbulently in the core and associated with laminar or turbulent film on the tube wall. The analysis for the vapor flows is performed under the condition that the velocity profiles are locally self-similar. The laminar and turbulent film models equate the gravity, pressure and viscous forces, and consider the effect of interfacial shear. The transition from laminar to turbulent film depends not only on the liquid Reynolds number but also on the interfacial shear stress. In this work we also proposed a new eddy viscosity model which is divided into three regions: the inner region in liquid condensate near the wall; the interface region including both liquid and vapor; and the outer region for the vapor core. Comparisons of the theory with some published experimental data showed good agreement.  相似文献   

10.
The relations for the temperature, velocity, and pressure fields on the interface between two regions occupied by a liquid and its vapor are derived from the balance laws. In contrast to the traditional relations, the relations obtained contain additional terms, responsible for certain physical phenomena on the interface and usually neglected in the force and energy flux balances. The problem of evaporation of a liquid layer is considered. An exact solution of this problem is constructed in the one-dimensional formulation. The evaporation rate is calculated for a specific liquid.  相似文献   

11.
Two-phase pressure drop measurements are very difficult to make while the fluid is in non-equilibrium condition, i.e. while phase change is taking place. This is further complicated when an atomized liquid is introduced in the system at much higher velocity than other components such as liquid layer, vapor core, and entrained droplets. The purpose of this paper is to develop a model to predict the two-phase pressure characteristics in a mesochannel under various heat flux and liquid atomization conditions. This model includes the momentum effects of liquid droplets from entrainment and atomization. To verify the model, an in-house experimental setup consisting of a series of converging mesochannels, an atomization facility and a heat source was developed. The two-phase pressure of boiling PF5050 was measured along the wall of a mesochannel. The one-dimensional model shows good agreement with the experimental data. The effects of channel wall angle, droplet velocity and spray mass fraction on two-phase pressure characteristics are predicted. Numerical results show that an optimal spray cooling unit can be designed by optimizing channel wall angle and droplet velocity.  相似文献   

12.
The critical heat flux (CHF) mechanisms for subcooled flow boiling are reviewed. Based on experimental observations reported by previous investigators, the authors have developed a new mechanistic CHF model for vertical subcooled flow at high pressure and high mass velocity. This model is based on the dryout of a thin liquid layer (sublayer) beneath an intermittent vapor blanket due to a Helmholtz instability at the sublayer-vapor interface. The parametric trends of CHF have been explored qualitatively and quantitatively with respect to variations in pressure, mass velocity, subcooling and tube diameter. Comparisons of the model predictions with experimental data for water show good agreement in the simulation of subcooled flow conditions of pressurized water reactors (PWRs).  相似文献   

13.
Wave regimes of viscous liquid film flows are considered when the viscosity coefficients vary in a wide range. An approximate model system of differential equations with two external governing parameters for the film layer thickness and the local flow rate is derived. The viscous dissipation of a film layer is taken into account in this system more accurately than in the well-known one-parameter Shkadov model. New properties of linear and nonlinear waves caused by the hydrodynamic instability of high-viscous liquid flows under gravity and surface tension are found.  相似文献   

14.
The temperature pulsations and wave characteristics in water film flow along a vertical plate with a heater are investigated. Using an infrared scanner, the temperature field on the film surface is measured for various heat flux densities on the heater. Experimental data on the variation of the temperature with time on a local segment of the liquid film surface during wave transmission are obtained. In the absence of a heat flux the data obtained are in good agreement with the results of other researchers for an isothermal liquid film. When the down-flowing liquid is heated, the thermocapillary forces lead to the formation of rivulets and a thin film between them. It is shown that in the inter-rivulet zone the relative wave amplitude increases due to the action of the thermocapillary forces.  相似文献   

15.
A new physical model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. To estimate the velocity profile in the liquid film, the liquid film was assumed to be in Couette flow forced by the interfacial velocity at the liquid–vapor interface. For simplifying the calculation procedures, the interfacial velocity was estimated by introducing an empirical power-law velocity profile. The resulting film thickness and heat transfer coefficient from the model were compared with the experimental data and the results obtained from the other condensation models. The results demonstrated that the proposed model described the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.  相似文献   

16.
As part of a study on the effect of tube diameter on the mean drop size and liquid film flow rate in annular two-phase flow, data was obtained for the vertical upflow of an air-water system in a 20 mm internal diameter tube, held at a pressure of 1.5 bar and ambient temperature. This complements data taken in earlier experiments on 10 and 32 mm tubes. Increases in the superficial gas velocity caused reductions in the mean drop size whilst increasing the liquid mass flux in all but the lowest gas velocity case, caused the drop size to rise. Comparisons were made between the current drop size data and that from a 10 mm and 32 mm internal diameter tube, for similar conditions of temperature and pressure. The current drop size measurements, which fall between those from earlier work, confirm the dependence of drop size on tube diameter. The performance of several drop size correlations have been tested. Because the correlations do not account for the influence of tube diameter, they fail to predict the drop size data accurately. The influence of gas and liquid flow rate on the measured film flow rate show trends similar to those seen in data from the 10 mm and 32 mm diameter tubes. Models, to calculate the entrained liquid mass flux were tested; good predictions were given.  相似文献   

17.
The aim of this work is to show the possibility of non-intrusively exciting second-mode instability waves with arbitrary frequency and amplitude in a hypersonic, planar boundary layer, by means of optical methods. Surface heat flux sensors were used to measure natural and artificially excited instability waves on a flat plate at zero angle of attack. The measurements were made using a stream-wise array of flush-mounted high-frequency heat flux sensors. In addition, surface pressure sensors were applied and show the instability waves, as well. The possibility to generate such waves by locally heating the model surface is shown.  相似文献   

18.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

19.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

20.
Periodic and solitary gravity-capillary waves propagating at a constant velocity at the surface of a fluid of finite depth are considered. The vorticity in the fluid is assumed to be constant. Analytical solutions are presented for waves of small amplitude. For waves of large amplitude, numerical solutions are computed by boundary integral equation methods. The results unify previous findings for irrotational gravity capillary waves and gravity waves with constant vorticity. In particular solitary waves with oscillatory tails and branches of solutions which exist only for waves of large amplitude are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号