首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper two adaptive sliding mode controls for synchronizing the state trajectories of the Genesio–Tesi system with unknown parameters and external disturbance are proposed. A switching surface is introduced and based on this switching surface, two adaptive sliding mode control schemes are presented to guarantee the occurrence of the sliding motion. The stability and robustness of the two proposed schemes are proved using Lyapunov stability theory. The effectiveness of our introduced schemes is provided by numerical simulations.  相似文献   

2.
3.
In this paper, a mathematical physiological model, Mackey–Glass system of a delay differential equation, is considered. With a greater delay, a periodic solution arises, which characterizes the disease of chronic granulocytic leukemia (CGL). To treat such disease, a blood transfusion feedback control is considered, from the point of view of mathematical control. By using a nonstandard finite-difference (NSFD) scheme to the control system, we obtain a numerical discrete system and analyze its Neimark–Sacker and fold bifurcations. The results imply that the condition of the illness could be relieved by transfusing blood to the patient, if the control is a delay control. Finally, the effectiveness of the control are illustrated by several numerical simulations.  相似文献   

4.
This Note deals with the existence and qualitative properties of traveling wave solutions of a nonlinear reaction–diffusion system with losses inside the domain. In particular, we show the existence of a continuum of admissible speeds of traveling waves. Lastly, by considering losses concentrated near the boundary of the domain, these results are compared with those already known in the case of losses on the boundary.  相似文献   

5.
In this paper, we discuss the dynamic server control in a two-class service system with abandonments. Two models are considered. In the first case, rewards are received upon service completion, and there are no abandonment costs (other than the lost opportunity to gain rewards). In the second, holding costs per customer per unit time are accrued, and each abandonment involves a fixed cost. Both cases are considered under the discounted or average reward/cost criterion. These are extensions of the classic scheduling question (without abandonments) where it is well known that simple priority rules hold.  相似文献   

6.
To generate insights into how production of new items and remanufacturing and disposal of returned products can be effectively coordinated, we develop a model of a hybrid manufacturing–remanufacturing system. Formulating the model as a Markov decision process, we investigate the structure of the optimal policy that jointly controls production, remanufacturing, and disposal decisions. Considering the average profit maximization criterion, we show that the joint optimal policy can be characterized by three monotone switching curves. Moreover, we show that there exist serviceable (i.e., as-new) and remanufacturing (i.e., returned) inventory thresholds beyond which production cannot be optimal but disposal is always optimal. We also identify conditions under which idling and disposal actions are always optimal when the system is empty. Using numerical comparisons between models with and without remanufacturing and disposal options, we generate insights into the benefit of utilizing these options. To effectively coordinate production, remanufacturing, and disposal activities, we propose a simple, implementable, and yet effective heuristic policy. Our extensive numerical results suggest that the proposed heuristic can greatly help firms to effectively coordinate their production, remanufacturing, and disposal activities and thereby reduce their operational costs.  相似文献   

7.
In this paper, we shall study the problem of optimal control of the parabolic–elliptic system
ut+(f(t,x,u))x+g(t,x,u)+Px(a(t,x)ux)x=f0+Bνut+(f(t,x,u))x+g(t,x,u)+Px(a(t,x)ux)x=f0+Bν
and
Pxx+P=h(t,x,u,ux)+k(t,x,u)Pxx+P=h(t,x,u,ux)+k(t,x,u)
with initial data
u|t=0=u0.u|t=0=u0.
The existence and uniqueness of weak solution to the parabolic–elliptic system are given in a short interval. According to the variational method, optimal control theories and distributed parameter system control theories, we can deduce that the norm of the solution is related to the control item and initial value in the special Hilbert space. The optimal control of the parabolic–elliptic system with the initial data is given and the existence of an optimal solution to the parabolic–elliptic system is proved.  相似文献   

8.
In this study, we investigate the global dynamics of non-autonomous and autonomous systems based on the Leslie–Gower type model using the Beddington–DeAngelis functional response (BDFR) with time-independent and time-dependent model parameters. Unpredictable disturbances are introduced in the forms of feedback control variables. BDFR explains the feeding rate of the predator as functions of both the predator and prey densities. The global stability of the unique positive equilibrium solution of the autonomous model is determined by defining an appropriate Lyapunov function. The condition obtained for the global stability of the interior equilibrium ensures that the global stability is free from control variables, which is also a significant issue in the ecological balance control procedure. The autonomous system exhibits complex dynamics via bifurcation scenarios, such as period doubling bifurcation. We prove the existence of a globally stable almost periodic solution of the associated non-autonomous model. The different coefficients of the system are taken as almost periodic functions by generalizing periodic assumptions. The permanence of the non-autonomous system is established by defining upper and lower averages of a function. Our results also explain how the important hypothesis in ecology known as the “intermediate disturbance hypothesis” applies in predator–prey interactions. We show that moderate feedback intensity can make both the ordinary differential equation system and partial differential equation system more robust. The results obtained provide new insights into the protection of populations, where moderate feedback intensity can promote the coexistence of species and adjusting the intensity of the feedback in appropriate regions can control the population biomass while maintaining the stability of the system. Finally, the results obtained from extensive numerical simulations support the analytical results as well as the usefulness of the present study in terms of ecological balance and bio-control problems in agro-ecosystems.  相似文献   

9.
This note is concerned with a stochastic competitive system with time delays. Under a simple assumption, almost sufficient and necessary conditions for stability in time average and extinction of each population are established. Some numerical simulations are introduced to illustrate the main results.  相似文献   

10.
The asymptotic Lyapunov stability with probability one of Duffing–Mathieu system with time-delayed feedback control under white-noise parametric excitation is studied. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method and the expression for the Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the effects of time delay in feedback control on the Lyapunov exponent and the stability of the system are analyzed. Meanwhile, the stability conditions for the system with different time delays are also obtained. The theoretical results are well verified through digital simulation.  相似文献   

11.
In this paper, we consider a discrete Lotka–Volterra competitive system with feedback control. Assuming that the coefficients in the system are almost periodic sequences, we obtain the existence and uniqueness of the almost periodic solution which is uniformly asymptotically stable.  相似文献   

12.
A predator–prey system with group defense and impulsive control strategy is established. By using Floquet theorem and small amplitude perturbation skills, a locally asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, if the impulsive period is larger than the critical value, the system is permanent. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest-eradication lost its stability. Further, numerical examples show that the system considered has more complicated dynamics, such as: (1) quasi-periodic oscillating, (2) period-doubling bifurcation, (3) period-halving bifurcation, (4) non-unique dynamics (meaning that several attractors coexist), (5) attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.  相似文献   

13.
We investigate the problem of enhancing the stability of a coupled transport–diffusion system with Dirichlet actuation and Dirichlet measurement. In the recent paper [H. Sano, Neumann boundary control of a coupled transport–diffusion system with boundary observation, J. Math. Anal. Appl. 377 (2011) 807–816], we treated the stabilization problem for the case with Neumann actuation and Dirichlet measurement, where the variable transformation of the state is performed by using the fractional power of an unbounded operator. However, we cannot use the similar transformation for the case with Dirichlet actuation and Dirichlet measurement, since it brings an ill-posed expression of the system. So, we use an algebraic approach for the formulation of the system. In this paper, it is shown that a reduced-order model with a finite-dimensional state variable is controllable and observable. The fact enables us to construct a finite-dimensional stability-enhancing controller for the original infinite-dimensional system by using a residual mode filter (RMF) approach. The novelty of this paper is the structure that the controller contains the dynamics with respect to the control variable. As a result, the state vector of the resulting closed-loop system includes the control variable as its entry.  相似文献   

14.
In this paper, we analyze the dynamical behaviour of a bioeconomic model system using differential algebraic equations. The system describes a prey–predator fishery with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. It is observed that a singularity-induced bifurcation phenomenon appears when a variation of the economic interest of harvesting is taken into account. We have incorporated a state feedback controller to stabilize the model system in the case of positive economic interest. A discrete-type gestational delay of predators is incorporated, and its effect on the dynamical behaviour of the model is analyzed. The occurrence of Hopf bifurcation of the proposed model with positive economic profit is shown in the neighbourhood of the coexisting equilibrium point through considering the delay as a bifurcation parameter. Finally, some numerical simulations are given to verify the analytical results, and the system is analyzed through graphical illustrations.  相似文献   

15.
In this paper, the ideal case for the important congestion control algorithms, i.e., the TCP (transmission control protocol) algorithm and the RED (random early detection) algorithm, is analyzed, and the following results are found. First, mathematical analysis proves the existence of two equilibria of this dynamical system (of DDEs—delay differential equations), which has not been established in previous works. Second, reduction of the round-trip delay leads to the optimal design of the TCP–RED congestion control. Unfortunately, a drawback of TCP–RED is that package dropping and congestion are induced. The dynamics of the DDEs are considered for when congestion does not take place and the averaged queue length is between the minimum threshold and the maximum one. Stability and Hopf bifurcation of the DDEs are considered. We find that if the time delays are sufficiently large, Hopf bifurcation of the two equilibria will appear, and thus stationary motions with approximately constant rates of arrival, averaged queue length and oscillations with periodically varying forms will arise. Simulations illustrate the richness of the dynamics of the DDEs.  相似文献   

16.
We consider boundary control and control via harvesting in a parabolic predator—prey system for a bounded region. The boundary control depicts the relationship between the boundary environment and the possibly harmful species. In addition, a proportion of the predator is harvested for profit. We choose to maximize the objective functional which incorporates the amount of the prey and the revenue of harvesting of the predator less the economic cost of sustaining a satisfactory boundary habitat and the cost due to the harvesting component. Moreover, we characterize the unique optimal control in terms of the solution to the optimality system, which is the state system coupled with the adjoint system.  相似文献   

17.
In this paper, the robust stabilization problem is investigated for a class of nonlinear discrete-time networked control systems (NCSs). To study the system stability and facilitate the design of fuzzy controller, Takagi–Sugeno (T–S) fuzzy models are employed to represent the system dynamics of the nonlinear discrete-time NCSs with effects of the approximation errors taken into account, and a unified model of NCSs in the T–S fuzzy model is proposed by modeling the approximation errors as norm-bounded uncertainties in system metrics, where non-ideal network Quality of Services (QoS), such as data dropout and network-induced delay, are coupled in a unified framework. Then, based on the Lyapunov–Krasovskii functional, sufficient conditions are derived for the existence of a fuzzy controller. By these criteria, two approaches to design a fuzzy controller are developed in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are provided to show the effectiveness of the proposed methods.  相似文献   

18.
We consider a reaction–diffusion–ODE quiescent model in which the species can switch between mobile and immobile categories. We assume that the population inhabits a bounded region and study how its dynamics depend on the parameters describing switching rates and local population dynamics. Our results suggest that the transfer displays a stabilizing effect and inhibits the generation of spatial periodic solutions. A new method to obtain global stability and dissipative structure is also explored by constructing Lyapunov functionals to overcome the loss of compactness.  相似文献   

19.
We establish the existence of renormalized solutions of the Vlasov–Maxwell–Boltzmann system with a defect measure in the presence of long-range interactions. We also present a control of the defect measure by the entropy dissipation only, which turns out to be crucial in the study of hydrodynamic limits.  相似文献   

20.
Stochastic differential delay equations with Poisson driven jumps of random magnitude are popular as models in mathematical finance. In this paper, we shall deal with convergence of the semi-implicit Euler method for nonlinear stochastic differential delay equations with random jump magnitudes and show that the approximate solutions strongly converge to the exact solutions with the order 1  1/q (q > 1). This result is more general than what they deal with the jump of deterministic magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号