首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion versus time curves were measured for poly(N-isopropylacrylamide) microgel latexes prepared by polymerization in water with sodium dodecyl sulfate, SDS. Polymerization rates increased with temperature with methylenebisacrylamide crosslinking monomer consumed faster thanN-isopropylacrylamide. The particle diameter decreased with increasing concentrations of SDS in the polymerization recipe and there was evidence that the rate of polymerization increased somewhat with SDS concentration. Particle formation occurred by homogeneous nucleation as micelles were absent.Comparison of particle size distributions from dynamic light scattering to those from a centrifugal sizer led to the conclusion that larger particles within a specific latex were less swollen with acetonitrile than were the smaller ones. This was interpreted as evidence for the polymer in larger particles having a higher crosslink density. Particle swelling was estimated from swelling ratios defined as the particle volume at 25 °C divided by the volume at 50 °C. In the absence of crosslinking poly(N-isopropylacrylamide) linear chains would disolve at 25 °C. The swelling results indicated that the average crosslink density in the particles decreased with conversion. This was explained by the observation that the methylenebisacrylamide was consumed more quickly and is typical of crosslinking in emulsion polymerization where polymer particles have high polymer concentrations at their birth.  相似文献   

2.
Summary A chromatographic method has been developed for enrichment of methionine-bound sulfur in casein, for stable-isotope analysis. Casein is precipitated from milk samples and cleaved by acid hydrolysis in 6m hydrochloric acid at 95 °C. The amino acids released are converted into theirN-acetyl derivatives by addition of acetic acid anhydride. After lyophilization,N-acetylmethionine is separated from the accompanying components on octadecylsilica by use of a gradient prepared from 0.02m formic acid and methanol. The fractions containingN-acetylmethionine are pooled and freeze dried. Procedures for hydrolysis and derivatization were optimized to furnish the highest yields. The influence of the abundance ratio on the chromatographic separation is shown and discussed. From 1.0 g casein 16.5 mgN-acetylmethionine were isolated.  相似文献   

3.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

4.
The oxidation of N-acetyl-and N-benzoylanabasine with the tert-butyl hydroperoxide (TBHP)— MoCl5 system or MCPBA proceeds selectively at the nitrogen atom of the pyridine ring. The oxidation of N-methylanabasine under similar conditions gives a mixture of stereo-isomeric N-oxides at the piperidine nitrogen atom, their ratio depending on the reagent used. The oxidation of anabasine by TBHP— MoCl5 or MCPBA is accompanied by dehydrogenation and results in anabaseine N-oxide. The reactions of anabasine and anabaseine pyridine N-oxides with acetic anhydride were investigated. The substituted 1H-3-pyridin-2-ones were prepared. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 322—328, February, 2006.  相似文献   

5.
We prepared thermo-responsive polymer hydrogels by γ-ray irradiation of aqueous solutions of N, N-diethylacrylamide at different temperatures below and above its lower critical solution temperature (LCST). Poly(N, N-diethylacrylamide) gel had a transparent and homogeneous structure when the radiation-induced polymerization and crosslinking were carried out below the LCST (25 °C) of the polymer. On the other hand, cloudy and heterogeneous gels were formed at temperatures above the LCST of the polymer (>35 °C). From environmental scanning electron microscopy observations, the gels prepared at 35 and 40 °C were seen to show sponge-like bi-continuous porous structures, while those prepared at 50 °C showed a porous structure consisting of interconnected microspheres. For temperature changes between 10 and 40 °C, gels with porous structures showed rapid volume transitions on a time scale of about a minute, not only for shrinking but also for swelling processes, which is in remarkable contrast to the porous poly(N-isopropylacrylamide) hydrogels.  相似文献   

6.
Summary. The preparation of N-acylsulfonamides is described using primary amines, arylsulfonyl chlorides and acyl chlorides. Reaction of primary aryl amines with arylsulfonyl chlorides in the presence of NaHCO3 produced N-arylsulfonamides, which reacted in situ with benzoyl chloride furnishing the corresponding N-benzoyl-N-arylsulfonamides in 72–96% yields. Accordingly, 4-nitrobenzoyl chloride and 3,5-dinitrobenzoyl chloride were used as acylating agents. All the reactions were carried out under solvent-free conditions at room temperature and the products were isolated after simple work-up in high yields and purity.  相似文献   

7.
Interaction of cellulose with amine oxide solvents   总被引:1,自引:3,他引:1  
Cellulose I, mainly as ramie or as Avicel microcrystalline cellulose, has been monitored by optical microscopy and by 13C CPMAS NMR, over the course of its dissolution in hot N-methylmorpholine N-oxide solvent. Its interaction with the near-solvent N-ethylmorpholine N-oxide and related non-solvents has also been investigated. NMR shows that N-methylmorpholine N-oxide partly converts crystalline cellulose I into amorphous solid cellulose. The changes in chemical shift imply increased flexibility at the glycosidic bonds. In contrast, N-ethylmorpholine N-oxide converts cellulose I to cellulose IIII, without dissolution. Microscopy shows that the ramie fibres swell laterally, and at least some also shorten longitudinally, during dissolution. Model studies using methyl--d-glucopyranose show no evidence from 13C chemical shifts for different modes of binding with different solvents. However, N-methylmorpholine N-oxide binds more strongly to methyl--d-glucopyranose in DMSO than does N-ethylmorpholine N-oxide, whereas N-ethylmorpholine N-oxide binds better to H2O. Also, 13C T 1 values for aqueous cellobioside show increasing rotational freedom of the –CH2OH sidechains as N-methylmorpholine N-oxide is added. Together, these observations imply the initial penetration of solvents and near-solvents between the molecular cellulose sheets. Subsequently, N-methylmorpholine N-oxide breaks H-bonds, particularly to O-6, just sufficiently to loosen individual chains and then dissolve the sheets.  相似文献   

8.
The synthesis of nanostructured poly(N-isopropylacrylamide) (polyNIPA) hydrogels by a two-stage polymerization process is reported here. The process involves the synthesis of slightly crosslinked polyNIPA nanoparticles by inverse (w/o) microemulsion polymerization; then, these particles are dried, cleaned and dispersed in an aqueous solution of NIPA and a crosslinking agent (N,N-methylene-bis-acrylamide or NMBA) and polymerized to produce the nanostructured hydrogels. Their swelling and de-swelling kinetics, volume phase transition temperatures (T VPT) and mechanical properties at the equilibrium swollen state are investigated as a function of the weight ratio of polyNIPA particles to monomer (NIPA). The nanostructured gels exhibit larger equilibrium water uptake, faster swelling and de-swelling rates and similar T VPT than those of the conventional ones; moreover, the elastic and Young moduli are larger than those of the conventional hydrogels at similar swelling ratios. The fast swelling and de-swelling kinetics are explained in terms of the controlled inhomogeneities introduced by the method of synthesis.  相似文献   

9.
New fullerenopyrrolidines were synthesized by the three-component reactions of fullerene C60, N-methylglycine, and aromatic aldehydes, viz., N,N-bis(2-chloroethyl)-4-aminobenzaldehyde, N-(2-chloroethyl)-N-methyl-4-aminobenzaldehyde, indole-3-carbaldehyde, 4-phenylbenzaldehyde, and anthracene-9-carbaldehyde. The structures of the resulting compounds were established by spectroscopic methods.  相似文献   

10.
Temperature-sensitive poly(N-tert-butylacrylamide-co-acrylamide) [P(NTBA-co-AAm)] hydrogels were synthesized by free-radical copolymerization in a water–methanol mixture using three types of crosslinkers: 1,2-ethyleneglycol dimethacrylate, N,N-methylenebisacrylamide, and 1,3-butandiol dimethacrylate. These thermosensitive hydrogels were swollen to equilibrium in water at 20°C and examined by gravimetric measurements. The influence of type and content of crosslinkers on the swelling ratio, the polymer–solvent interaction parameter (χ), the average molecular mass between crosslinks and the effective crosslinking density (ν E) of the hydrogels were reported and discussed. The swelling process in water was found to be non-Fickian diffusion. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter for the hydrogels were determined by using the Flory–Rehner theory based on the phantom network model of swelling equilibrium. Negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature-sensitive property in water; that is, swelling at a lower temperature and shrinking at a higher temperature. The temperature-reversibility and on–off switching properties of the P(NTBA-co-AAm) hydrogels may be considered as good candidates for designing novel drug-delivery systems.  相似文献   

11.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

12.
A historical perspective on the application of conformational analysis to structure-based ligand design approach is presented. The application of isodensity molecular electrostatic potential surfaces with the conformational energy surfaces (CES) have allowed us to reach pertinent conclusions for aiding synthetic and biochemical studies. Here we illustrate such an application on the modeling of the potent analogs of an important, environmentally stringent herbicidal compound glyphosate by constructing conformational energy surfaces. The systems were modeled by substituting F, Cl, and NH— OH moiety to the position of pharmacophoric nitrogen center in glyphosate structure. All the calculations were thoroughly performed with ab initio MO theory at Hartree–Fock method using 3-21G(d) basis functions. On the basis of the results, we identified the bioactive conformations for N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate as (−38, 77), (−61, 111), and (−167, −169), respectively. Geometry optimization of certain selected conformations of these compounds using hybrid DFT method with 6–31+G(d) basis functions provides nearly equal values of φ and ψ. Moreover, the results indicate that the global minimum structures of N-fluoro and N-chloro analogs of glyphosate show cyclic conformation whereas the N-hydroxyamino-glyphosate global minimum structure shows spyrocyclic and zig-zag conformation. Also, the predicted bioactive conformation of N-hydroxyamino analog optimally overlaps with glyphosate backbone in EPSPS complex with 0.1 Å RMSD value. However, the other two compounds slightly deviate from the backbone of glyphosate with RMSD of 0.92 Å for N-fluoro-glyphosate and 0.83 Å for N-chloro-glyphosate. The linear N-hydroxyamino-glyphosate exhibits relatively more number of intermolecular hydrogen bond interactions as compared to the other two analogs. Further, comparison of CES of previously studied glyphosate analogs such as N-hydroxy-glyphosate (2.2 μM) and N-amino-glyphosate (0.61 μM) with the present systems reveals the order of activity as: N-hydroxyamino-glyphosate > N-fluoro-glyphosate > N-chloro-glyphosate based on CES flexibility. Also, the calculated heats of formation of N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate are −288, −209, and −288 kcal/mol, respectively, which clearly indicate that the N-hydroxyamino and N-fluoro analogs of glyphosate are thermodynamically more stable than N-amino-glyphosate (−278 kcal/mol).  相似文献   

13.
A mass spectrometric study of three N-oxides, quinoline N-oxide, and the synthetic antibiotics carbadox and olaquindox, was carried out with a hybrid quadrupole/time-of-flight (TOF) mass spectrometer coupled with electrospray (ES) and atmospheric pressure chemical ionization (APCI) sources. The full scan mass spectra of the N-oxides obtained with ES are similar to those obtained with APCI, and the characteristic fragment ions corresponding to [M+H−O]+√ were observed in the full scan mass spectrum of each N-oxide examined. The protonated molecule of each N-oxide was subjected to collision-induced dissociation (CID) and accurate mass measurements were made of each fragment ion so as to determine its elemental composition. Fragment ions generated at enhanced cone voltages upstream of the first mass-resolving element were subjected to CID so as to identify the direct product ion–precursor ion relationship. Plausible structures have been proposed for most of the fragment ions observed. Elimination of OH√ radicals generated from the N→O functional group is a characteristic fragmentation pathway of the N-oxides. The expulsion of radicals and small stable molecules is accompanied by formation and subsequent contraction of heterocyclic rings.  相似文献   

14.
Procedures were developed for the synthesis of N-acyloxy-N-alkoxy derivatives of ureas, carbamates, and benzamides by the reactions of the corresponding N-alkoxy-N-chloro derivatives with sodium carboxylates in MeCN. N-Chloro-N-ethoxy-p-toluenesulfonamide was inert in this reaction. Alcoholysis of N-acyloxy-N-alkoxy derivatives of ureas, carbamates, and tert-alkylamines afforded the corresponding N,N-dialkoxy derivatives, whereas alcoholysis of N-acetoxy-N-ethoxybenzamide gave rise to alkyl benzoates.  相似文献   

15.
Thermoresponsive colloidal microgels were prepared by polymerisation of N-isopropylacrylamide (NIPAM) with varying concentration of a cross-linking monomer, N,N-methylenebisacrylamide (MBA), in water with either 0.4 or 6.7 mM concentration of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H-NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N-isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering and electrophoretic mobility measurements were used to characterise the aqueous microgels. The results from the different characterisation methods indicated that PNIPAM microgels prepared in 6.7 mM SDS concentration are structurally different compared to their correspondences prepared in 0.4 mM concentration. Increasing MBA concentration in the microgel synthesis appears to increase the structural heterogeneity in both cases of SDS concentration. PNIPAM structures with significantly higher molecular mobilities at temperatures above 35 °C were observed in the microgels prepared in 0.4 mM SDS concentration, as indicated by the 1H NMR relaxation times of different PNIPAM protons. We conclude that the high mobilities measured with NMR at elevated temperatures and also the clearly negative values of zeta potential are in connection to a fairly mobile surface layer with polyelectrolyte nature and a consequent high local lower critical solution temperature.  相似文献   

16.
Starch materials of different amylose content were allowed to react with saturated and unsaturated fatty acids of varying chain length from C14 to C18 under homogeneous conditions applying the solvent N,N-dimethyl acetamide in combination with LiCl. As reagent the corresponding acid chlorides and, alternatively, carboxylic acids in situ activated with toluene-4-sulfonyl chloride and N,N′-carbonyldiimidazole (CDI) were studied. Using fatty acid chlorides (FACl) and toluene-4-sulfonyl chloride-activated acids an almost complete substitution of the starch occurs. By in situ activation of the fatty acids with CDI, products with a degree of substitution up to 2 were obtained, which, in particular, represents a simple and very mild procedure.  相似文献   

17.
Amphiphilic diblock copolymers consisting of 2-(N, N-dimethylamino)ethyl methacrylate (DMAEMA, abbreviated as DMA) and stearyl methacrylate (SMA) with different degrees of polymerization and compositions were prepared by reversible addition–fragmentation chain transfer (RAFT) copolymerization. The composition and chemical structures of (co)polymers were confirmed by the measurements of 1H NMR spectroscopy and gel permeation chromatography (GPC). The self-aggregating structures of amphiphilic diblock copolymers with the concentration of 0.1~0.3 wt.% in THF/water mixed solvent was investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). It was found that both the morphologies and aggregating particle size resulted from the amphiphilic diblock copolymers depended on the variation of pH values, the lengths of the hydrophobic PSMA chains, and the weight ratio of THF/water mixed solvent.  相似文献   

18.
The emulsifier-free emulsion polymerization of styrene (St) and N-isopropylacrylamide (NIPAAm) was successfully carried out with microwave irradiation, and the monodisperse thermoresponsive poly(styrene-co-N-isopropylacrylamide) (poly(St-co-NIPAAm)) particles with diameters in the range 100–130 nm were prepared. The morphology, size and size distribution of the poly(St-co-NIPAAm) particles were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and photon correlation spectroscopy (PCS), respectively. The results showed that poly(St-co-NIPAAm) particles had spherical morphology, and the poly(St-co-NIPAAm) particles prepared by emulsifier-free emulsion polymerization with microwave irradiation were smaller, more uniform than those obtained with conventional heating. The hydrodynamic diameters of poly(St-co-NIPAAm) particles were decreased as the temperature increased from 25 °C to 40 °C, and poly(St-co-NIPAAm) particles collapsed remarkably at 32 °C, which is the lower critical solution temperature of the poly(N-isopropylacrylamide). The morphology of the assembled poly(St-co–NIPAAm) particles was observed by SEM, it was found that monodisperse poly(St-co-NIPAAm) particles could assemble to form the two-dimensional order structures.  相似文献   

19.
A structure and kinetic stability study on some complexes with the general formula MN5, where M are the alkali-metal atoms, Li, Na, K, and Rb, has been carried by using hybrid density functional methods. Complex B (C2v) with two points of attachment to the N5 ring is the most energetically favored for all metals considered here. Pyramidal structures A (C5v) are kinetically unstable and they rapidly rearrange to the most stable planar structures B. At the QCISD(T)/6-311 + G*//B3LYP/6-311 + G* + ZPE (B3LYP/6-311 + G*) level, the decomposition barrier heights of LiN5-B, NaN5–B, KN5-B, and RbN5-B are predicted to be 19.9, 22.0, 22.5, and 23.0 kcal/mol, respectively. In addition, the rate constants of the decomposition reaction MN5-B MN3 + N2 (M + Li, Na, K, and Rb) are also predicted using conventional transition state theory and canonical variational transition state theory, respectively.  相似文献   

20.
N-Nitro-N-methyl-O-substituted hydroxylamines were synthesized in high yields by nitration of appropriateN-acetylhydroxylamines with nitrogen pentoxide.Translated fromIzvestiya Akademioi Nauk. Seriya Khimicheskaya, No. 3, pp767–769, March, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号