首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

2.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

3.
CrIII, MnII, CoII, NiII, CuII and PdII complexes of the macrocyclic ligand, 2,3,5,8,9,11 hexamethyl-1,4,7,10 tetraaza- cyclododeca-1,3,7,9 tetraene (DADAP), have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. These spectral studies suggest an octahedral geometry for the CrIII, MnII and CoII, square planar geometry for NiII and PdII and tetragonal geometry for CuII complexes.  相似文献   

4.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

5.
Summary FeIII, CoII, NiII and CuII, complexes of a new Schiff base ligand, prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with benzaldehyde (ACB), and also CuII and NiII complexes of a second Schiff base ligand prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with salicylaldehyde (ACS), have been prepared and characterized by elemental analyses, conductivity measurements, magnetic and spectral (electronic, i.r. and e.p.r.) studies. The i.r. spectra suggest that both ACB and ACS are acting as bidentate ligands, coordinating through one of the sulphur atoms and through the azomethine nitrogen atom. The magnetic moment of the FeIII complex indicates spin crossover behaviour. Square planar structures have been assigned to the CuII and NiII complexes and a tetrahedral structure to the CoII complex. The e.p.r. spectra of the CuII complexes suggest a square planar environment with rhombic distortion around the CuII ion.  相似文献   

6.
Summary The title complexes [ML2]n+=CoIII, CuII, NiII; L=1-thia-4,7-diazacyclononane-S-oxide) have been prepared and characterized spectroscopically. The sulphoxide group is coordinated through the oxygen atom and the complexes have atrans-O,O geometry. The nickel(II) complex of bis(2-amino-ethyl)sulphoxide has also been studied.  相似文献   

7.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

8.
Summary N-benzamidosalicylaldimine (H2L) complexes of CuII, NiII, CoII, FeII, MnII. VOIV and TiOIV have been prepared. The ligand probably coordinates to the metal from the hydroxyl, carbonyl and imino groups.  相似文献   

9.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

10.
Summary The synthesis and characterization of MnII, CoII, NiII, CuII, ZnII, CdII UO 2 2+ , CrIII and FeIII complexes of biacetylmonoxime nicotinoyl hydrazone (H2BMNH) are reported. Elemental analysis, molar conductance, magnetic moment and spectral (i.r., visible and n.m.r.) measurements have been used to characterize the complexes. I.r. spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the MnII, NiII, CrIII and FeIII complexes, while a square-planar structure is proposed for both CoII and CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

11.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

12.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

13.
Summary The 4-hydroxyphenylthiocarboxyhydrazide (Hoth) ligand has been characterized by i.r.,1H and13C spectral studies. Its metal complexes with FeII, CoII,III, NiII, CuII and ZnII have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility. Mössbauer, visible, e.s.r., i.r.,1H and13C n.m.r. spectral studies. The bonding and stereochemistry of the complexes are discussed. Hoth and its CuII complexes have been screened towards bacteria, viruses and fungi.  相似文献   

14.
Summary The polarographic reduction at a dropping mercury electrode of several CuII, NiII and CoIII complexes of tetraaza macrocycles has been studied in 0.1M NaClO4 as supporting electrolyte. The CuII complexes show values of half-wave potentials which can be correlated to the ring size and ligand field stabilisation. A similar, though less marked, trend is noticeable in the reduction of the NiII complexes. No such conclusions can be drawn in the case of the CoIII complexes.  相似文献   

15.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

16.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

17.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

18.
Summary Biacetyldihydrazone (BdH) complexes [M(BdH)3](ClO4)2 (M=CoIIor CuII) and [M(BdH)3](NO3)2,3 (M = NiIIor FeIII) have been prepared and characterized by chemical analysis, conductance measurements, electronic, i.r. and e.p.r. spectral studies and magnetic subsceptibilities measurements. A mononuclear octahedral configuration is proposed for all complexes studied.  相似文献   

19.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

20.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:19,20-tribenzo-9,12,15,18-tetraoxacyclounkosa-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, Pb(NO3)2, Co(NO3)2· 6H2O, La(NO3)3·6H2O respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, u.v–vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoIII complex was oxidized to CoIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号