首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inclusion complexation of 2-hydroxy-3-methoxybenzaldehyde (2HMB), 4-hydroxy-3-methoxybenzaldehyde (4HMB), 3,4-dimethoxybenzaldehyde (DMB) and 4-hydroxy-3,5-dimethoxybenzaldehyde (HDMB) with α-CD, β-CD, HP-α-CD and HP-β-CD were carried out by UV-Visible, steady-state and time-resolved fluorescence and PM3 methods. All the benzaldehydes shows dual fluorescence in aqueous and CD mediums and 1:1 inclusion complexes were formed with CDs. PM3 geometry optimizations results indicate that the HDMB/CD complex is significantly more favorable than the other complexes. The negative enthalpy changes suggest that the inclusion complexation processes are spontaneous. The geometry of the most stable complex shows that methoxy/OH group of HMBs is entrapped in the less polar CD cavities, while the aldehyde group present in the upper part of the CDs cavities.  相似文献   

2.
Spectral characteristics of flutamide drug have been studied in various solvents and β-cyclodextrin (β-CD). The inclusion complex of flutamide with β-CD is analysed by UV-visible, fluorimetry, FT-IR, 1H NMR, SEM, DSC and AM1 methods. In all solvents, flutamide exhibits a dual fluorescence. The longer wavelength emission (A band ∼380 nm) is due to intramolecular charge transfer state (ICT) and the shorter wavelength emission (B band ∼285 nm) originates from a locally excited state. In β-CD, the increase in the fluorescence intensity of ‘A’ band indicates ICT emission enhanced in the β-CD medium. β-CD studies shows isopropyl group is present in the interior part of the β-CD cavity whereas amino and CF3 groups are present in the outside of the β-CD cavity. A mechanism is proposed to explain the 1:1 inclusion process.  相似文献   

3.
光谱法研究环糊精与艾地苯醌的超分子作用   总被引:1,自引:1,他引:0  
用荧光光谱法研究了药物艾地苯醌与β-环糊精在溶液中的超分子复合作用,发现在加入β-环糊精后其荧光强度显著增强;Benesi-Hildebrand曲线显示在溶液中它们之间以1∶1的方式结合,包合常数K为412mol/L;紫外滴定实验显示出艾地苯醌的去质子化常数在加入β-CD后与本身的pKa基本一致,说明超分子复合物中艾地苯醌分子中的—OH基团存在于环糊精空腔外面。核磁测试显示在加入β-CD后艾地苯醌的C-11的化学位移向高场移动,而C-11上的氢位移则向低场移动,表明芳环上的甲氧基进入了环糊精的空腔。  相似文献   

4.
We report the influence of β-cyclodextrin on the binding of the drug dronedarone with bovine serum albumin. The stoichiometry, the binding constant, and the mode of binding of the derivative with β-cyclodextrin are studied by UV–Visible absorption, fluorescence, and 2 Dimensional Rotating Frame Overhauser Effect Spectroscopy (2D ROESY NMR) spectroscopic techniques. The structure of the 1:1 inclusion complex is proposed. The binding of free dronedarone with bovine serum albumin and β-cyclodextrin-bound dronedarone are studied by fluorescence quenching and Förster resonance transfer. The decreased magnitude of the Stern–Volmer constant and the binding constant for the interaction of dronedarone with bovine serum albumin in the presence of β-cyclodextrin are articulated. The donor-to-acceptor distances in the presence and the absence of β-cyclodextrin are compared. The binding sites of the dronedarone with bovine serum albumin are reported by molecular modeling. Dronedarone binds to the sub-domain III of bovine serum albumin. The 3-(dibutylaminopropoxy)benzoyl moiety of dronedarone binds with bovine serum albumin. Encapsulation with β-cyclodextrin decreases the binding strength of dronedarone with bovine serum albumin.  相似文献   

5.
The interaction of 1,4-bis(3-(dodecyloxylacyl)pyridinium)butane dibromide (designated as NAE12-4-12) and bovine serum albumin (BSA) was investigated by UV–vis absorption, FTIR and fluorescence spectroscopies. The results showed that NAE12-4-12 had strong ability to quench the intrinsic fluorescence of BSA and caused the emission peak blueshift through a static quenching process. The binding constant of NAE12-4-12 with BSA decreased with increasing temperature. The binding process was exothermic, spontaneous and enthalpy driven. The distance between BSA and NAE12-4-12 decreased with incremental concentration of NAE12-4-12. Furthermore, FTIR spectra of BSA–NAE12-4-12 reflected that the secondary structure of BSA changed in the presence of NAE12-4-12, and the curve fitting of IR spectra revealed that the content of α-helix decreased while those of β-sheet, β-turn and random coil rose.  相似文献   

6.
We found that the fluorescence intensity of curcumin (CU) can be highly enhanced by protein bovine serum albumin (BSA) and human serum albumin (HSA) in the presence of chitosan (CTS). Based on this finding, a new fluorimetric method to determine the concentration of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of protein in range of 0.007-100 μg·mL(-1) for BSA and 0.004-100 μg·mL(-1) for HSA at 426 nm excitation, and 0.007-100 μg·mL(-1) for BSA and 0.01-100 μg·mL(-1)for HSA at 280 nm excitation, while corresponding qualitative detection limits (S/N = 3) can lower to 3.96, 2.46, 4.56, 9.20 ng·mL(-1), respectively. The method has been successfully used for the determination of HSA in real samples. Based on resonance light scattering and UV-visible absorption spectroscopic analysis, mechanism studies suggested that the highly enhanced fluorescence of CU was resulted from synergic effects of favorable hydrophobic microenvironment provided by BSA and CTS and efficient intermolecular energy transfer between BSA and CU. Protein BSA may bind to CTS through hydrogen bonds, which causes the protein conformation to convert from β-fold to α-helix. CU can combine with the BSA-CTS complex through its center carbonyl carbon, and CTS plays a key role in promoting the energy transfer process by shortening the distance between BSA and CU.  相似文献   

7.
采用荧光光谱法对β-环糊精(β-CD)与柔红霉素(DNR)包结物溶液进行表征。研究了β-CD与DNR之间的超分子包结作用机理,讨论了时间、温度和β-CD浓度对包结反应的影响,建立了新的定量检测微量DNR的方法。研究结果表明,DNR本身具有天然荧光,与β-CD形成1:1的超分子包结络合物后,荧光强度增大,β-CD对DNR有较强的荧光增敏作用。在25℃,pH7.0时,包结常数K=1.26×106L/mol。β-CD增敏荧光定量测定DNR的线性回归方程为y=1.78×107x+312.76,相关系数为r=0.9953,检测下限为3.77×10-6mol/L。  相似文献   

8.
《光谱学快报》2013,46(4-5):569-581
Abstract

Steady‐state fluorescence and phosphorescence of inclusion complexes of cyclodextrins (CDs) with fluorescent nonionic surfactant and 1‐bromonaphthalene (BN) are described in detail. The inclusion of the hydrophobic moiety of surfactants inside the cavity of CDs led to enhanced monomer‐like fluorescence with a bathochromic shift of λex and a hypsochromic shift of λem. 1H‐NMR provides additional evidence for deep inclusion of the hydrophobic moiety of surfactants. BN can squeeze into more hydrophobic cavity of β‐CD that has accommodated the hydrophobic moiety of a surfactant and show its phosphorescence and remarkable quenching effect on the fluorescence of a surfactant in aerated aqueous solution. Stern–Volmer quenching depends on the inclusion of the phenyl rings of surfactants and BN into the cavity of CDs. Comparison of molecular sizes reveals that further inclusion of BN into the cavity of β‐CD occupied by a surfactant may force the flexible octyl group of a surfactant to deform to a greater extent, and close‐packing complexes were obtained. In the case of heptakis(2,6‐di‐O‐methyl)‐β‐CD, BN only binds to its cavity opening due to the steric hindrance of methyl substituents at the rim of its cavity.  相似文献   

9.
In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe—Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.  相似文献   

10.
The interactions of two stereoisomeric antioxidant flavonoids, catechin (C) and epicatechin (EC) with bovine serum albumin (BSA) and human serum albumin (HSA), have been investigated by steady state and time resolved fluorescence, phosphorescence, circular dichroism (CD), FTIR and protein–ligand docking studies. The steady-state fluorescence studies indicate a single binding site for both the ligands. FTIR spectra suggest that in both the albumins, C and EC stabilize the α-helix at the cost of a corresponding loss in the β-sheet structure. CD studies have been carried out using (±)C, and both the epimers (+)C and (?)C. The low temperature phosphorescence and protein–ligand [(+), (?) and (±) forms of C and EC] docking studies indicate that the ligands bind in the proximity of Trp 134 of BSA and Trp 214 of HSA, thereby changing their solvent accessible surface areas (ASA). Asn 158 and Glu 130 side chains are found to be within the hydrogen bonding distance from the phenolic –OH groups of C and EC in the case of BSA complex. C and EC are located within the binding pocket of sub-domain IIa of HSA.  相似文献   

11.
The inclusion complexation behavior of phenoxyaliphatic acid derivatives of 3,3′-bis(indolyl)methane (BIMs 1–5) with β-cyclodextrin (β-CD) were investigated in both solution and solid state by means of UV-Visible, fluorescence spectroscopy, FT-IR and 1H NMR techniques. The nature of the host–guest inclusion complex between BIMs and β-CD has been elucidated. The experimental results confirmed the existence of 1:1 inclusion complex of BIMs with β-CD. The binding constants describing the extent of formation of the complexes have been determined using Benesi-Hildebrand plots using UV-Vis and fluorescence spectroscopy. BIMs exhibited an affinity for β-CD. The spectral studies suggested the phenyl ring along with alkyl substitutions of BIMs is present inside of β-CD cavity.  相似文献   

12.
This paper reports the double confinement of 4,4-diaminodiphenyl sulfone (Dapsone) inside γ–cyclodextrin (CD) in presence of surfactants (cationic, anionic and nonionic) using steady-state and time-resolved fluorescence spectroscopy. Interpretation of fluorescence spectra, fluorescence anisotropy and time resolved fluorescence decay of the γ-CD?Dapsone?micellar system hints at lesser microviscosity and the partial release of the probe molecule from the supramolecular host–guest complex in ionic micelles, of which greater in cationic micelles, but due to greater restriction and rigidity in presence of non-ionic micelle makes the probe more rigidly inside CD. Changes in computed rotational decay also corroborate the above findings.
Figure
Effect of surfactants on the inclusion complex of Dapsone inside mixed cyclodextrin-micelle environment  相似文献   

13.
Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), β-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of β-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.  相似文献   

14.
The absorption and fluorescence spectra of labetalol and pseudoephedrine have been studied in different polarities of solvents and β-cyclodextrin (β-CD). The inclusion complexation with β-CD is investigated by UV-visible, steady state and time resolved fluorescence spectra and PM3 method. In protic solvents, the normal emission originates from a locally excited state and the longer wavelength emission is due to intramolecular charge transfer (TICT). Labetalol forms a 1:2 complex and pseudoephedrine forms 1:1 complex with β-CD. Nanosecond time-resolved studies indicated that both molecules show triexponential decay. Thermodynamic parameters (ΔG, ΔH, ΔS) and HOMO, LUMO orbital investigations confirm the stability of the inclusion complex. The geometry of the most stable complex shows that the aromatic ring is deeply self included inside the β-CD cavity and intermolecular hydrogen bonds were established between host and guest molecules. This suggests that hydrophobic effect and hydrogen bond play an important role in the inclusion process.  相似文献   

15.
王浩江  朱媛  刘静纯  张莉  卞伟 《光谱实验室》2011,28(4):1698-1701
采用荧光光谱法研究了β-环糊精(β-CD)、甲基-β-环糊精(M-β-CD)、羟丙基-β-环糊精(HP-β-CD)、磺丁基-β-环糊精(SBE-β-CD)与山奈素的包合特性.在固定山奈素浓度和改变环糊精及其衍生物浓度的情况下,山奈素荧光发射波长的变化以及荧光强度的增强表明了包合物的形成,用荧光双倒数法计算了环糊精及其衍...  相似文献   

16.
The present study evidences the role of steric effect in the orientation preference of guest into host using the 1:1 inclusion complex of 5-indanol/β-CD model. Two different orientations of guest (5-indanol) into host (β-CD) are considered for the inclusion of 5-indanol into the cavity through the 2° rim of β-CD. The energy differences in the inclusion process are calculated using PM3 semi-empirical method and HF/6-31G** basis set. By the investigation of stabilisation energies, it is found that the energy of both orientations increases to maximum value due to the increase of steric repulsive effect when the crowding of bulky group of 5-indanol occurs at 1° or 2° rim of β-CD. On comparing the fluorescence spectral data of 5-indanol:β-CD complex and 2-napthol:β-CD complex, it is observed that the steric effect is intensified due to the presence of bulky group.  相似文献   

17.
采用β-环糊精诱导SDBS产生显著增强的激发光谱信号,通过激发的光谱信号与SDBS含量的对应关系定量存在较强干扰作用时的SDBS水溶液。研究结果表明,β-环糊精具有显著提高SDBS的检测范围和检测精度的作用,同时具有显著降低三采复配驱油剂中SDS、OP-10及HPAM等常用组分对SDBS定量产生的干扰影响。该方法的定量误差在2.0%以下,检测精度可达10-2~10-3 mg·L-1。在水溶液体系中,β-环糊精可自发与SDBS形成摩尔比为1:1型包结物,该包结物的吉布斯函变ΔγGmΘ(298 K)为-11.064 kJ·mol-1,稳定常数Ka为87。结合FTIR分析推测出SDBS分子中苯环基团进入β-环糊精空腔内部形成稳定的包结物,是其产生激发光谱的根本原因。  相似文献   

18.
A novel protein imprinted polymer was prepared using acryloyl-β-cyclodextrin (β-CD) and acrylamide as monomers on the surface of silica gel. The bovine hemoglobin was used as template and β-CD was allowed to self-assemble with the template protein through hydrogen bonding and hydrophobic interaction. Polymerization was carried out in the presence of acrylamide as an assistant monomer, which resulted in a novel protein imprinted polymer. After removing the template, imprinted cavities with the shape and spatial distribution of functional groups were formed. Bovine serum albumin (BSA) cytochrome c (Cyt) and lysozyme (Lyz) were employed as non-template proteins to test the imprinting effect and the specific binding of bovine hemoglobin to the polymer. The results of the adsorption experiments indicated that such protein imprinted polymer, which was synthesized with β-CD and acrylamide as monomers, could selectively recognize the template protein.  相似文献   

19.
洛美沙星-Tb3+配合物与BSA相互作用的荧光光谱研究   总被引:3,自引:1,他引:2  
以洛美沙星-Tb3 作为荧光探针,利用荧光光谱研究了洛美沙星-Tb3 配合物与BSA的相互作用.实验发现:牛血清白蛋白与洛美沙星分子之间有较强的结合作用,而且洛美沙星对BSA的构象有一定的影响;同时BSA与Tb3 之间存在静电作用,可置换出配合物中的水分子,使体系的荧光强度增强.结果表明:在实验最佳条件下,牛血清白蛋白能增强洛美沙星-铽的荧光强度,据此建立了一种检测白蛋白的新方法,该法的检测限可达mg水平,线性范围为16.5~148.5μg·mL-1,检测限为68.8 ng·mL-1,RSD为1.4%.此法简便易行,而且不受共存物质的干扰.  相似文献   

20.
The polarity sensitive photo-induced intra-molecular charge transfer (ICT) fluorescence probe (E)-3-(4-methylamino-phenyl)-acrylic acid ethyl ester (MAPAEE) has been used to study the model protein Bovine Serum Albumin (BSA) in its native and thermal and urea induced denatured states. The interaction between BSA and the regular surfactant Sodium Dodecyl Sulphate (SDS) as well as the biologically relevant steroid-based amphiphile Sodium Deoxycholate (NaDC) has also been very keenly followed using this ICT probe. The variation of micellar properties of both SDS and NaDC with increasing ionic strengths and in presence of the chaotrope urea has also been well documemted by the same probe. Steady-state spectroscopy, FRET, and fluorescence anisotropy measurements have been used to gain better insight into these processes and the molecule MAPAEE to be a full-bodied fluorescent probe for studying such intricate biological systems, their properties and interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号