首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper extends a strong-form meshless boundary collocation method, named the singular boundary method (SBM), for the solution of dynamic poroelastic problems in the frequency domain, which is governed by Biot equations in the form of mixed displacement–pressure formulation. The solutions to problems are represented by using the fundamental solutions of the governing equations in the SBM formulations. To isolate the singularities of the fundamental solutions, the SBM uses the concept of the origin intensity factors to allow the source points to be placed on the physical boundary coinciding with collocation points, which avoids the auxiliary boundary issue of the method of fundamental solutions (MFS). Combining with the origin intensity factors of Laplace and plane strain elastostatic problems, this study derives the SBM formulations for poroelastic problems. Five examples for 2D poroelastic problems are examined to demonstrate the efficiency and accuracy of the present method. In particular, we test the SBM to the multiply connected domain problem, the multilayer problem and the poroelastic problem with corner stress singularities, which are all under varied ranges of frequencies.  相似文献   

2.
The singularities of the boundary layer equations and the laminar viscous gas flow structure in the vicinity of the convergence plane on sharp conical bodies at incidence are analyzed. In the outer part of the boundary layer the singularities are obtained in explicit form. It is shown that in the vicinity of a singularity a boundary domain, in which the flow is governed by the shortened Navier-Stokes equations, is formed; their regular solutions are obtained. The viscous-inviscid interaction effect predominates in a region whose extent is of the order of the square root of the boundary layer thickness, in which the flow is described by a two-layer model, namely, the Euler equations in the slender-body approximation for the outer region and the three-dimensional boundary layer equations; the pressure is determined from the interaction conditions. On the basis of an analysis of the solutions for the outer part of the boundary layer it is shown that interaction leads to attenuation of the singularities and the dependence of the nature of the flow on the longitudinal coordinate, but does not make it possible to eliminate the singularities completely.  相似文献   

3.
This paper is concerned with corner singularities of weak solutions of boundary value problems in the theory of plane linearized elasticity. The presence of angular corner points or points at which the type of boundary conditions changes yields generally local singularities in the solution. This singular behavior in the vicinity of such points can be described with the help of asymptotic singular representations for the solution, which essentially depend on the zeros of certain transcendental functions. These transcendental functions will be derived and analyzed for all ten possible combinations of boundary conditions, generated by the four basic ones, prescribing in the tangential and normal direction of the boundary, respectively, either the displacement or the tractions. The regularity of the corresponding weak solutions will be investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
伍贻兆  杨岞 《力学学报》1990,22(3):257-265
本文利用渐近展开匹配法分析钝头翼型的跨音速绕流,导出了描述前缘附近流动的一级近似、二级近似下的速位方程、边界条件及相应的近似解析解,并构成关于翼表面速度的一致有效合成解,消除了跨音速小扰动近似的前缘奇性,对于大展弦比后掠翼绕流,可利用翼型绕流分析结果,消除机翼前缘奇性。  相似文献   

5.
We consider fully nonlinear parabolic equations on bounded domains under Dirichlet boundary conditions. Assuming that the equation and the domain satisfy certain symmetry conditions, we prove that each bounded positive solution of the Dirichlet problem is asymptotically symmetric. Compared with previous results of this type, we do not assume certain crucial hypotheses, such as uniform (with respect to time) positivity of the solution or regularity of the nonlinearity in time. Our method is based on estimates of solutions of linear parabolic problems, in particular on a theorem on asymptotic positivity of such solutions.  相似文献   

6.
. In this paper we use the moving plane method to get the radial symmetry about a point of the positive ground state solutions of the equation in , in the case . We assume f to be locally Lipschitz continuous in and nonincreasing near zero but we do not require any hypothesis on the critical set of the solution. To apply the moving plane method we first prove a weak comparison theorem for solutions of differential inequalities in unbounded domains. (Accepted September 21, 1998)  相似文献   

7.
Many problems of applied oceanography and environmental science demand the solution of the momentum, mass and energy equations on physical domains having curving coastlines. Finite-difference calculations representing the boundary as a step function may give inaccurate results near the coastline where simulation results are of greatest interest for numerous applications. This suggests the use of methods which are capable of handling the problem of boundary curvature. This paper presents computational results for the shallow water equations on a circular ring of constant depth, employing the concept of boundary fitted grids (BFG) for an accurate representation of the boundary. All calculations are performed on a rectangle in the transformed plane using a mesh with square grid spacing. Comparisons of the simulations of transient normal mode oscillations and analytic solutions are shown, demonstrating that this technique yields accurate results in situations (provided that there is a reasonable choice of grid) involving a curved boundary. The software developed allows application to any two-dimensional area, regardless of the complexity of the geometry. Simulation runs were made with two co-ordinate systems. For the first system, the grid point distribution was obtained from polar co-ordinates. For the second one, grid point positions were calculated numerically, solving Poisson's equation. It was found that small variations in the metric coefficients do not deteriorate the accuracy of the simulation results. Moreover, comparisons of surface elevation and velocity components at grid points near the inner and outer radii obtained from an x?y Cartesian grid model with the BFG simulation were made. The former model produced inacccuracies at grid points near boundaries, and, owing to the large number of mesh points used to yield the necessary fine resolution, the computation time was found to be a factor of three higher.  相似文献   

8.
We consider the propagation of singularities for a differential system which constitutes a simplified model of thin shells with developable middle surface (parabolic case). Extensions of the solutions out of the domain allow us to consider either boundary or internal singularities. The properties of propagation of singularities and their relation with the structure of the boundary layers are given. We remove a mistake in [2], Section 6.1, concerning the analyticity of solutions (in fact they are in the Gevrey class of order 3).  相似文献   

9.
The singularities in the three-dimensional laminar boundary layer on a cone at incidence are studied. It is shown that these singularities are formed in the outer part of the boundary layer and described by linear equations whose solutions are obtained in analytic form. The known results for the plane of symmetry are classified on this basis. Two solutions of the non-self-similar problem are found, one of which has a singularity at zero incidence and in the sink plane. The second branch goes over continuously into the solution for axisymmetric flow. However, as the angle of attack increases, in the sink plane a singularity is formed and all the self-similar solutions existing here lose their meaning. Starting from the critical angle of attack, the flow in the vicinity of the sink plane is no longer described by the boundary layer equations, so that the results can be used to construct an adequate physical model.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 25–33, November–December, 1993.  相似文献   

10.
There are many problems of the dynamics of viscous flows of liquids and gases at high Reynolds numbers for the solution of which the classical theory of the boundary layer cannot be used. This applies, in particular, to all the problems with various sorts of local singularities in the stream-flows in the vicinity of corners, in regions of interaction of the boundary layer with an incident shock, flows near points of separation or attachment of the stream, etc. The purpose of the present paper is to attempt the theoretical investigation of problems of this type on the basis of the general analysis of the asymptotic behavior of the solutions of the Navier-Stokes equations. In order to do this, use is made of the familiar method of the construction and splicing of a combination of asymptotic expansions representing the solutions in the various characteristic regions of the stream with viscosity decreasing without bound [1].As an example, detailed consideration is given to the problem of viscous supersonic flow near a wall with large local curvature of the surface.  相似文献   

11.
A number of control problems for mechanical systems with feedback are reduced to a matrix algebraic Riccati equation. The exact solutions of matrix algebraic Riccati equations with singularities are presented. These singularities do not permit the use of standard solution procedures. Asymptotic solutions of these equations are found in the neighborhood of the singular points. These results can be used as test examples in developing new solution algorithms for matrix algebraic Riccati equations __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 113–120, February 2006.  相似文献   

12.
It is shown that Poisson-like equations for 3-vector fields can have divergence-free solutions and desired boundary behaviour in bounded domains, provided the mean curvature of the boundary is nowhere too large positive. A-priori estimates for the solutions are given.  相似文献   

13.
Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.  相似文献   

14.
We continue a previous work [1] on propagation of singularities for model problems of thin shell theory in the parabolic and hyperbolic cases. The singularities along the characteristic boundaries are considered using extensions of the solutions out of the domain, adapted to either free or fixed boundaries. The corresponding transport equations are given except for the case of a characteristic fixed boundary for a hyperbolic shell, where the phenomenon is non local, but depends on the whole domain.  相似文献   

15.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials subjected to a uniform tension loading. The permittivity of the air in the crack is considered. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the materials constants, the electric boundary conditions and the lattice parameter on the stress and the electric displacement fields near the crack tips. It can be obtained that the effects of the electric boundary conditions on the electric displacement fields are large. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

16.
In this work, we show how to obtain a free boundary problem as the limit of a fully nonlinear elliptic system of equations that models population segregation of the Gause–Lotka–Volterra type. We study the regularity of the solutions. In particular, we prove Lipschitz regularity across the free boundary. The problem is motivated by the work done by Caffarelli, Karakhanyan and Fang-Hua Lin for the linear case.  相似文献   

17.
基于非均匀有理B样条(NURBS)曲面建模技术,边界物理量同样用NURBS基函数插值,推导出三维声场等几何边界积分方程。进一步以控制点为设计变量,用直接微分法推导出等几何敏感度边界积分方程,给出声场声压对形状参量的敏感度。针对边界积分方程中的超奇异积分,使用奇异相消技术并结合Cauchy主值积分和Hadamard有限部分积分处理,给出了超奇异积分的NURBS插值半解析表达式。数值算例验证了本文算法求解声学结构形状敏感度的有效性,为声学结构的整体形状优化打下基础。  相似文献   

18.
In this paper, we study the Euler-Poisson equations governing gas motion under self-gravitational force. We are interested in the evolution of the gaseous stars, for which the density function has compact support. We establish existence theory for the stationary solutions and describe the behavior of the solutions near the vacuum boundary. The boundary behavior thus obtained agrees with the physical boundary condition proposed and studied in [L, LY] for both Euler equations with damping and the Euler-Poisson equations. Existence, non-existence, uniqueness and instability of the stationary solutions with vacuum are also discussed in terms of the adiabatic exponent and the entropy function. And the phenomena of the blowup, that is, the collapsing of the star to a single point with finite mass, as well as the drifting of part of the star to infinity in space are also studied and shown to agree with the conjecture from the physical considerations.  相似文献   

19.
郝巨涛  刘光廷 《力学学报》1998,30(5):635-640
在刚度矩阵法的基础上建立了用于进行二维多层体结构断裂分析的边界单元法(BEMLM)由于BEMLM的基本方程中已经包含了层体表面和裂纹缝面的边界条件,因而不需要对这些边界进行单元离散,从而其断裂分析可望有较好的精度通过与柯西积分方程法进行结合,算例表明BE MLM是可靠并有效的  相似文献   

20.
In this paper we consider a nonlocal elasticity theory defined by Eringen’s integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy the governing equations on an unbounded domain. Some insight to the theory is given by showing that the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equations in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals in the governing equations which appear near the boundaries. A weighted residual approach is employed to minimize the residuals near the boundaries. The method presented in this paper has much in common with Trefftz methods especially when the influence area of the kernel function is much smaller than the main computational domain. Several one/two dimensional problems are solved to demonstrate the way in which the EBFs can be used through the proposed boundary layer method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号