首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetically prepared boltwoodite and compreignacite were characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The obtained TRLFS emission spectra of both synthesized uranium minerals differ from each other in their positions of the vibronic peak maxima and in their fluorescence lifetimes. Also, the shapes of the spectra and their respective intensities are different. The TRLFS-spectrum of boltwoodite showed well-resolved sharp vibronic peaks at 485.1, 501.5, 521.2, 543.0, 567.4, and 591.4nm with deep notches between them and compreignacite is characterized by two broad peaks with various shoulders. Here five emission bands were identified at 500.7, 516.1, 532.4, 554.3, and 579.6nm. The shape of the TRLFS spectra of compreignacite is typical for uranium in a hydroxide coordination environment. For both minerals two fluorescence lifetimes were extracted. The two species of boltwoodite and compreignacite, respectively, showed the same positions of the peak maxima showing that the coordination environments are similar, but differ in the chemistry and number of possible quenchers, e.g. water molecules and hydroxide groups. For boltwoodite fluorescence lifetimes of 382 and 2130ns, and for compreignacite shorter ones of 202 and 914ns, respectively, were determined. The spectroscopic signatures of the two uranyl minerals reported here could be useful for identifying uranyl(VI) mineral species as colloids, as thin coatings on minerals, as minor component in soils, or as alteration products of nuclear waste.  相似文献   

2.
3.
Raman and infrared spectra of secondary uranyl phosphate vanmeersscheite and Raman spectrum of secondary uranyl arsenate arsenuranylite were recorded and interpreted, and the spectra related to the structure of the minerals. Observed bands were attributed to the stretching and bending vibrations of uranyl, phosphate and/or arsenate units and OH (H(2)O and OH(-)) units. Phosphuranylite sheet topology is characteristic for both minerals. U-O bond lengths in uranyl were calculated from the spectra and compared with those inferred for vanmeersscheite from the X-ray single crystal structure analysis. O-H...O hydrogen bonds in both minerals were also inferred using the Libowitzky empirical relation.  相似文献   

4.
5.
An X-ray diffraction study of the single crystals of (C2H7N4O)2[(UO2)2(OH)2(C2O4)(CHO2)2] was carried out. The compound crystallizes in the triclinic system, space group $P\bar 1$ , Z = 2, a = 5.5621(8) Å, b = 8.1489(10) Å, c = 11.8757(16) Å, α = 88.866(7)°, β = 82.204(6)°, γ = 87.378(6)°, V = 532.7(1) Å3, ρcalcd = 2.988 g/cm3. The main structural units in the crystal are the [(UO2)2(OH)2(C2O4)(CHO2)2)]2? chains corresponding to the crystal chemical group A2M 2 2 K02M 2 1 (A = UO 2 2+ , M2 = OH?, K02 = C2O 4 2? , M1 = CHO 2 ? ) of uranyl complexes. The chains are united into a three-dimensional framework through the electrostatic interaction and hydrogen bonds involving uranyl, oxalate, and hydroxyl groups, formate ions, and 1-carbamoylguanidinium cations.  相似文献   

6.
7.
The mineral arsentsumebite Pb(2)Cu(AsO(4))(SO(4))(OH), a copper arsenate-sulphate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A(2)B(XO(4))(OH,H(2)O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu(2+),Fe(2+), Fe(3+), Mn(2+), Mn(3+), Zn and XO(4) may be AsO(4), PO(4), SO(4),VO(4). Bands are assigned to the stretching and bending modes of SO(4)(2-) AsO(4)(3-) and HOAsO(3) units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.  相似文献   

8.
The crystal structures of Na2Mg3(OH)2(SO4)3 · 4H2O and K2Mg3(OH)2(SO4)3 · 2H2O, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by mixing alkali metal sulfate, magnesium sulfate hydrate, and magnesium oxide with small amounts of water followed by heating at 150 °C. The compounds crystallize in space group Cmc21 (No. 36) with lattice parameters of a = 19.7351(3), b = 7.2228(2), c = 10.0285(2) Å for the sodium and a = 17.9427(2), b = 7.5184(1), c = 9.7945(1) Å for the potassium sample. The crystal structure consists of a linked MgO6–SO4 layered network, where the space between the layers is filled with either potassium (K+) or Na+‐2H2O units. The potassium‐bearing structure is isostructural to K2Co3(OH)2(SO4)3 · 2(H2O). The sodium compound has a similar crystal structure, where the bigger potassium ion is replaced by sodium ions and twice as many water molecules. Geometry optimization of the hydrogen positions were made with an empirical energy code.  相似文献   

9.
The new uranyl phosphate [(UO2)3(PO4)O(OH)(H2O)2](H2O) (1) with an unprecedented framework structure has been synthesized at 150 and 185 degrees C. The structure (tetragonal, P4(2)/mbc, a = 14.015(1) A, c = 13.083(2) A, V = 2575.6(4) A(3), Z = 8) contains uranyl phosphate chains composed of uranyl pentagonal and hexagonal bipyramids and phosphate tetrahedra linked by sharing of polyhedral edges. The uranyl phosphate chains are aligned both along [100] and [010] and are linked into a novel framework structure involving channels along [001]. Topologically identical chains occur linked into sheets in more than a dozen uranyl phosphate minerals, but these chains have never been observed in opposing orientations and linked into a framework as in 1.  相似文献   

10.
We present the synthesis, characterization by DT-TGA and IR, single crystal X-ray nuclear structure at 300 K, nuclear and magnetic structure from neutron powder diffraction on a deuterated sample at 1.4 K, and magnetic properties as a function of temperature and magnetic field of Ni(3)(OH)(2)(SO(4))(2)(H(2)O)(2). The structure is formed of chains, parallel to the c-axis, of edge-sharing Ni(1)O(6) octahedra, connected by the corners of Ni(2)O(6) octahedra to form corrugated sheets along the bc-plane. The sheets are connected to one another by the sulfate groups to form the 3D network. The magnetic properties measured by ac and dc magnetization, isothermal magnetization at 2 K, and heat capacity are characterized by a transition from a paramagnet (C = 3.954 emu K/mol and theta = -31 K) to a canted antiferromagnet at T(N) = 29 K with an estimated canting angle of 0.2-0.3 degrees. Deduced from powder neutron diffraction data, the magnetic structure is modeled by alternate pairs of Ni(1) within a chain having their moments pointing along [010] and [010], respectively. The moments of Ni(2) atoms are oppositely oriented with respect to their adjacent pairs. The resulting structure is that of a compensated arrangement of moments within one layer, comprising one ferromagnetic and three antiferromagnetic superexchange pathways between the nickel atoms.  相似文献   

11.
12.
13.
14.
15.
16.
Decasodium uranyl hexa­sulfate trihydrate, Na10[(UO2)(SO4)4](SO4)2·3H2O, contains an unusual uranyl sulfate cluster with the composition [(UO2)(SO4)4]6?. The cluster is composed of a uranyl pentagonal bipyramid and four sulfate tetrahedra. Three sulfate tetrahedra are linked to the uranyl pentagonal bipyramid by the sharing of vertices, and the other shares an equatorial edge of the uranyl pentagonal bipyramid. The uranyl sulfate clusters occur in layers parallel to (010). The structure also contains two isolated symmetrically distinct sulfate tetrahedra, which also occur in layers parallel to (010). The uranyl sulfate clusters and isolated sulfate tetrahedra are linked through bonds to Na+ cations, and by hydrogen bonding involving the water molecules.  相似文献   

17.
18.
19.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

20.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号