首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
o-,p- andm-xylene have been condensed with formaldehyde using paratoluene sulphonic acid as a catalyst and acetic acid/acetic anhydride as a solvent. The xylene-formaldehyde resins thus obtained have been characterised by IR and NMR spectra. The average molecular weight of the resin samples was determined by vapour pressure osmometry. Kinetic parameters were determined by differential thermal analysis, thermogravimetry and differential scanning calorimetry.  相似文献   

2.
Porous silicon materials, macro- and mesoporous silicon, obtained by electrochemical anodic etching of n- and p-Si were studied by differential thermal analysis at a steady temperature rise and under isothermal conditions in nitrogen atmosphere and in air. The method was used to estimate the presence and amount of phases of surface volatile compounds. The possibility was studied to perform a comparative estimate of the specific surface area of different types of porous silicon from data on the surface oxidation kinetics determined by the dynamic differential thermal analysis in air.  相似文献   

3.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

4.
The synthesis and structure of the p-hydroxybenzoic acid polymer is described. The polymer was successfully prepared from either the phenyl ester of p-hydroxybenzoic acid or from p-acetoxybenzoic acid. With highly purified acetoxybenzoic acid, single crystals of the polymer could be prepared. The structure of the polymer was determined and shown to consist of a double helix where the two chains are in a reversed head-to-tail order. The unit cell dimensions are: a = 17.8 Å and c = 18.4 Å, where c corresponds to the chain length with a repeat distance of three units. The mechanism of polymerization and formation of the single crystal is discussed. The polymer displays a reversible high-temperature crystalline transition at 325–360°C (not a melting point). The transition was characterized by differential thermal analysis, differential calorimetry, thermal expansion coefficient measurements, high-temperature x-ray scans, and dielectric constant determinations. Orientation of the polymer chains during fabrication and changes in the mechanism of oxidative degradation above the crystal transition are described.  相似文献   

5.
The peak temperature (T p) and different temperature (ΔT) are the basic information in the differential thermal analysis (DTA). Considering the kinetic relation and the heat equilibrium in DTA, a correctional differential kinetic equation (containing T p and ΔT parameter) is proposed. In the dehydration reaction of CaC2O4·H2O, the activation energy calculated from the new equation showed some smaller than that from Kissinger equation, but some bigger than that from Piloyan equation.  相似文献   

6.
The polyimide block copolymers with diacetylene functionality were prepared in a two-step process: (1) oligomeric imide formation terminated with 1-amino-3-ethynylbenzene, and (2) oxidative coupling of the acetylene-terminated polyimides with p- and/or m-diethynylbenzene or bispropargyl ether of Bisphenol A to form block copolymers, or oxidative coupling within themselves in the presence of a copper (I) catalyst. The resulting copolymers were crosslinked with UV irradiation or thermal treatment. The thermal crosslinking process and the thermal stability of the crosslinked materials were studied by differential scanning calorimetry (DSC) and isothermal gravimetric analysis (IGA), respectively.  相似文献   

7.
Two thermoset systems based on maleimides and diglycidyl ether of bisphenol A (DGEBA) cured with p-aminobenzoic acid were characterized in terms of thermal and electrical behavior. Thermal characterization has been undertaken by means of thermogravimetric analysis in nitrogen atmosphere up to 600°C using simultaneous thermogravimetric/Fourier transform infrared/mass spectrometry (TG/FT-IR/MS) analysis. In the first stage of thermal degradation, the global kinetic parameters [activation energy (Ea) and preexponential factor (log A1 (s−1))] were calculated using the isoconversional method of Friedman. The energies variation as well as the shape of the differential thermal analysis curves suggests that the thermal decomposition process occurred in multiple stages. The evolved gases analysis was conducted by simultaneous TG/FT-IR/MS coupled techniques. Dielectric relaxation spectroscopy characterization was also made.  相似文献   

8.
A new monomer, 4‐methyl‐9‐p‐tolyl‐9,10‐dihydrochromeno[8,7‐e][1,3]oxazin‐2(8H)‐one, possessing both benzoxazine and coumarin rings in its structure was synthesized by the reaction of 4‐methyl‐7‐hydroxycoumarin, paraformaldehyde, and p‐toluidine in methanol at 40 °C and characterized with spectral analysis. Upon photolysis around 300 nm, this monomer underwent dimerization via the [2πs+2πs] cycloaddition reaction. Photodimerization reactions were investigated with UV and 1H NMR spectroscopy measurements. The thermal ring‐opening reaction of the benzoxazine ring was demonstrated with differential scanning calorimetry measurements. The thermal behavior of the cured product was also investigated with thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1670–1676, 2007  相似文献   

9.
Dielectric relaxation measurements were made on methyl methacrylate—styrene and methyl methacrylate–p-chlorostyrene copolymers at temperatures higher than the glass transition temperature Tg. It was found that the temperature dependence of the relaxation time can be described satisfactorily by an expression derived recently for chain motion in amorphous polymers. The temperature Tg obtained from the expression agrees well with that determined by differential thermal analysis.  相似文献   

10.
Cu ( II ) supported on poly(8‐hydroxyquinoline‐p‐styrenesulfonate) (Cu ( II )@PHQSS) was prepared and fully characterized by the different techniques including fourier transform infrared spectroscopy (FT‐IR), 1H NMR, 13C NMR, thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersive X‐ray analysis (EDS). Afterward, the Cu ( II )@PHQSS as nanostructured catalyst was used as catalyst for the synthesis of hexahydroquinolines.  相似文献   

11.
Polyamides containing arylene sulfone ether linkages were synthesized from 4,4′-[sulfonylbis(p-phenyleneoxy)] dibenzoyl chloride (SPCI), 3,3′-[sulfonylbis(p-phenyleneoxy)] dibenzoyl chloride (SMCl), and arylene sulfone ether diamines (SED), by solution and interfacial polymerization techniques. In solution polymerization, the effect of various acid acceptors such as propylene oxide (PO), lithium chloride (LiCl)/lithium hydroxide (LiOH), and triethylamine (TEA) on molecular weight of the polyamides was studied. The effect of methyl substituted and unsubstituted aromatic sulfone ether diamines on molecular weight and thermal properties of polyamides was also studied. The polyamides prepared were characterized by solution viscosity, elemental analysis, thermal gravimetric analysis, differential scanning calorimetry, and x-ray diffraction. Physical and thermal properties of polyamides prepared from SPCl and SED were compared with the polyamides prepared from SMCl and SED.  相似文献   

12.
The title compound 3,3-dinitroazetidinium (DNAZ) 3,5-dinitrosalicylate (3,5-DNSA) was prepared and the crystal structure has been determined by a four-circle X-ray diffractometer. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG techniques. The kinetic parameters were obtained from analysis of the TG curves by Kissinger method, Ozawa method, the differential method and the integral method. The kinetic model function in differential form and the value of E a and A of the decomposition reaction of the title compound are f(α)=4α3/4, 130.83 kJ mol−1 and 1013.80s−1, respectively. The critical temperature of thermal explosion of the title compound is 147.55 °C. The values of ΔS , ΔH and ΔG of this reaction are −1.35 J mol−1 K−1, 122.42 and 122.97 kJ mol−1, respectively. The specific heat capacity of the title compound was determined with a continuous C p mode of mircocalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was obtained.  相似文献   

13.
Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, Cp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and Cp simply and accurately. These measurements are not affected by complex thermal histories.  相似文献   

14.
Cholesteryl p-2,2,3,3,4,4,5,5-octafluoropentoxybenzoate was synthesized and its phase transition behaviour studied by differential scanning calorimetry and thermal polarizing microscopy. The results show that the compound has SmA and monotropic SmE phases.  相似文献   

15.
A reactive amino-ended toughener was blended with different commercial epoxy resins namely, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl p-aminophenol and 1,5-naphthalenediamine as curing agent. The toughener was an aromatic amino-ended copolyethersulphone (coPES):poly(ether-sulphone)–poly(etherether-sulphone). The effect of the toughener on the thermal decomposition and char oxidation behaviour of the epoxy resins was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. The glass transition temperature (T g) as well as characteristic parameters of decomposition, initial decomposition temperature (T i) and temperature at maximum degradation rate (T m), in both inert and oxidative environments, were determined in order to verify the influence of toughener on the thermal degradation of the different epoxy systems. It was observed that the presence of coPES maintains the high level thermal stability of the resin and that the glass transition temperature increase with the toughener percentage.  相似文献   

16.
Novel fully lower‐rim, carbonate‐bridged calix[8]arene derivatives were successfully synthesized in high yield by the condensation of p‐alkyl substituted calix[8]arenes with triphosgene. Different bases and catalysts were used for the preparation depending on the p‐alkyl substituted groups of the calix[8]arenes. The conformational features of the derivatives were examined by 1H NMR analysis. Thermosetting formulations were prepared from a mixture of bisphenol A polycarbonate with calix[8]arene carbonate derivatives using sodium benzoate as a catalyst. Their crosslinking behaviors were studied using differential thermal/thermogravimetric analysis. No glass‐transition temperatures were observed after annealing at 280–300 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1149–1155, 2001  相似文献   

17.
Photo-crosslinkable thermotropic liquid crystalline block copolyetheresters with photoreactive hard segment of poly(hexamethylene p-phenylenediacrylate) and soft segment of poly(tetramethylene ether) were synthesized by melt polycondensation from n-butyl-p-phenylenediacrylate, hexamethylene glycol, and poly(tetramethylene ether) glycol (PTMG, Mn = 1000–3000). The influence of molecular weight and composition of PTMG unit on the thermal behavior was determined by differential scanning calorimetry and polarized optical microscopy. All synthesized block copolymers show thermotropic liquid crystalline phase and can photo-crosslink by UV irradiation. Photoreaction of the copolymer thin film was carried out using Hg-UV light and investigated by FT–IR spectroscopy and a dynamic viscoelastic analyzer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1849–1855, 1997  相似文献   

18.
Ten structurally different bisimide resins were prepared by reacting maleic anhydride/citraconic anhydride and benzophenone tetracarboxylic dianhydride with aromatic diamines and fused aromatic structures or heterocyclic groups. The amines included were 1,5-diaminonaphthalene, 2,5-bis(p-aminophenyl)1,3,4-oxadiazole, 3,3-bis(p-aminophenyl)phthalide, 9,9-bis(p-aminophenyl)fluorene. and 10,10-bis(p-aminophenyl)anthrone. These monomers were characterized by infrared (IR). 1H-NMR, mass spectroscopy, and elemental analysis. Thermal polymerization of these monomers was investigated by differential scanning calorimetry. Broad exothermic peaks were observed for a temperature range of 225–380°C. Temperature of exothermic peak position was influenced by the presence of substituents at the olefinic bond, and in biscitraconimides it was 40–50°C lower than in the corresponding bismaleimides. Anaerobic char yields of cured bisimide resins ranged from 44 to 64%. Oxadiazole-containing bisimides had low thermal stability. Increase in formula weight between the imide groups did not influence the char yields in a systematic manner. Graphite cloth laminates with two of these bisimide resins were fabricated and tested for a number of physical properties. Their limiting oxygen index was 70–72%.  相似文献   

19.
The polymerization of p-xylylene was followed with a newly designed differential thermal analysis system at temperatures between ?196°C and ?20°C. It was found that at the lower temperatures the monomer condenses first to the crystalline monomer before simultaneous polymerization and crystallization. At the higher temperatures, polymerization and crystallization are successive. The data are in agreement with the morphology and crystal structure data derived in Part I of this series of papers on crystallization during polymerization of poly-p-xylylene.  相似文献   

20.
Hydroxy‐terminated poly(pentamethylene p,p′‐bibenzoate) oligomers with different molecular weights were prepared. The poly(pentamethylene p,p′‐bibenzoate) oligomers showed rather high crystallinity, and some of them exhibited a monotropic smectic phase. Block copolyesters with hard segments of poly(pentamethylene p,p′‐bibenzoate) and soft segments of poly(tetramethylene adipate) were prepared by coupling the poly(pentamethylene p,p′‐bibenzoate) oligomer and a poly(tetramethylene adipate)glycol with methylene‐4,4′‐diphenylene diisocyanate in solution. The block copolyesters were characterized by IR, 1H NMR, differential scanning calorimetry, a polarized microscope, and X‐ray diffraction. The thermal transitions of the block copolyesters were dependent on the composition and the molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used. The hard segments in the block copolyesters showed no liquid crystallinity and exhibited rather low crystallinity or were even amorphous. The molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used influences the glass‐transition temperature and crystalline properties of the soft segments in the block copolyesters significantly. The effect on the glass‐transition temperature of the soft segments is described as the difference in miscibility between the hard and soft segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2626–2636, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号