首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory. The findings raise questions about the physical acceptability of this class of strain gradient theories.  相似文献   

2.
In the conventional theory of finite deformations of fibre-reinforced elastic solids it is assumed that the strain-energy is an isotropic invariant function of the deformation and a unit vector A that defines the fibre direction and is convected with the material. This leads to a constitutive equation that involves no natural length. To incorporate fibre bending stiffness into a continuum theory, we make the more general assumption that the strain-energy depends on deformation, fibre direction, and the gradients of the fibre direction in the deformed configuration. The resulting extended theory requires, in general, a non-symmetric stress and the couple-stress. The constitutive equations for stress and couple-stress are formulated in a general way, and specialized to the case in which dependence on the fibre direction gradients is restricted to dependence on their directional derivatives in the fibre direction. This is further specialized to the case of plane strain, and finite pure bending of a thick plate is solved as an example. We also formulate and develop the linearized theory in which the stress and couple-stress are linear functions of the first and second spacial derivatives of the displacement. In this case for the symmetric part of the stress we recover the standard equations of transversely isotropic linear elasticity, with five elastic moduli, and find that, in the most general case, a further seven moduli are required to characterize the couple-stress.  相似文献   

3.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

4.
5.
Detailed mathematical derivation and simple closed form results for the size-dependent elastic properties of micro- and nano-sized honeycombs are presented in this paper. The results indicate that at micrometer scale, strain gradient has a dominant effect and at nano-meter scale, surface elasticity dominates the effect on the honeycomb elastic properties. The in-plane elastic properties of a nano- or micro-honeycomb could be controlled to vary over a range of around 10% by adjusting the initial stress in the cell walls by applying an electric potential. In addition, the bending and shear rigidities of some commonly used micro- and nano-structural elements have been obtained and presented in this paper, which could be of important applications in the design of MEMS and NEMS.  相似文献   

6.
The homogenized response of metal matrix composites(MMC) is studied using strain gradient plasticity.The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free energy inside the micro structure is included due to the elastic strains and plastic strain gradients. A unit cell containing a circular elastic fiber is analyzed under macroscopic simple shear in addition to transverse and longitudinal loading. The analyses are carried out under generalized plane strain condition. Micro-macro homogenization is performed observing the Hill-Mandel energy condition,and overall loading is considered such that the homogenized higher order terms vanish. The results highlight the intrinsic size-effects as well as the effect of fiber volume fraction on the overall response curves, plastic strain distributions and homogenized yield surfaces under different loading conditions. It is concluded that composites with smaller reinforcement size have larger initial yield surfaces and furthermore,they exhibit more kinematic hardening.  相似文献   

7.
C 1 natural element method (C 1 NEM) is applied to strain gradient linear elasticity, and size effects on microstructures are analyzed. The shape functions in C 1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C 1 NEM for strain gradient linear elasticity is constructed, and several typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.  相似文献   

8.
A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational principle. The main differences between the Eringen stress gradient model and the concomitant Aifantis strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient effects and compared with the analogous strain gradient beam model.  相似文献   

9.
In this study, non-linear free vibration of micro-plates based on strain gradient elasticity theory is investigated. A general form of Mindlin’s first-strain gradient elasticity theory is employed to obtain a general Kirchhoff micro-plate formulation. The von Karman strain tensor is used to capture the geometric non-linearity. The governing equations of motion and boundary conditions are obtained in a variational framework. The Homotopy analysis method is employed to obtain an accurate analytical expression for the non-linear natural frequency of vibration. For some specific values of the gradient-based material parameters, the general plate formulation can be reduced to those based on some special forms of strain gradient elasticity theory. Accordingly, three different micro-plate formulations are introduced, which are based on three special strain gradient elasticity theories. It is found that both geometric non-linearity and size effect increase the natural frequency of vibration. In a micro-plate having a thickness comparable with the material length scale parameter, the strain gradient effect on increasing the non-linear natural frequency is higher than that of the geometric non-linearity. By increasing the plate thickness, the strain gradient effect decreases or even diminishes. In this case, geometric non-linearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for micro-plates with some specific thickness to length scale parameter ratios, both geometric non-linearity and size effect have significant role on increasing the frequency of non-linear vibration.  相似文献   

10.
Mindlin's second strain gradient continuum theory for isotropic linear elastic materials is used to model two different kinds of size-dependent surface effects observed in the mechanical behaviour of nano-objects. First, the existence of an initial higher order stress represented by Mindlin's cohesion parameter, b0, makes it possible to account for the relaxation behaviour of traction-free surfaces. Second, the higher order elastic moduli, ci, coupling the strain tensor and its second gradient are shown to significantly affect the apparent elastic properties of nano-beams and nano-films under uni-axial loading. These two effects are independent from each other and allow for separated identification of the corresponding material parameters. Analytical results are provided for the size-dependent apparent shear modulus of a nano-thin strip under shear. Finite element simulations are then performed to derive the dependence of the apparent Young modulus and Poisson ratio of nano-films with respect to their thickness, and to illustrate hole free surface relaxation in a periodic nano-porous material.  相似文献   

11.
This paper quantifies the effect of strain gradient plasticity (SGP) on crack tip stress elevation for a broad range of applied loading conditions and constitutive model parameters, including both macroscopic hardening parameters and individual material length-scales controlling gradient effects. Finite element simulations incorporating the Fleck-Hutchinson SGP theory are presented for an asymptotically sharp stationary crack. Results identify fundamental scaling relationships describing (i) the physical length-scales over which strain gradients are prominent, and (ii) the degree of stress elevation over conventional Hutchinson-Rice-Rosengren (HRR) fields. Results illustrate that the three length-scale theory predicts much larger SGP effects than the single length-scale theory. Critically, the first length-scale parameter dominates SGP stress elevation: this suggests that SGP effects in fracture can be predicted using the length-scales extracted from nanoindentation, which exhibits similar behavior. Transitional loading/material parameters are identified that establish regimes of SGP relevance: this provides the foundation for the rational application of SGP when developing new micromechanical models of crack tip damage mechanisms and associated subcritical crack propagation behavior in structural alloys.  相似文献   

12.
Interfaces play an important role for the plastic deformation at the micron scale. In this paper, two types of interface models for isotropic materials are developed and applied in a thin film analysis. The first type, which can also be motivated from dislocation theory, assumes that the plastic work at the interface is stored as a surface energy that is linear in plastic strain. In the second model, the plastic work is completely dissipated and there is no build-up of a surface energy. Both formulations introduce one length scale parameter for the bulk material and one for the interface, which together control the film behaviour. It is demonstrated that the two interface models give equivalent results for a monotonous, increasing load. The combined influence of bulk and interface is numerically studied and it is shown that size effects are obtained, which are controlled by the length scale parameters of bulk and interface.  相似文献   

13.
In this study, a homogenization theory based on the Gurtin strain gradient formulation and its finite element discretization are developed for investigating the size effects on macroscopic responses of periodic materials. To derive the homogenization equations consisting of the relation of macroscopic stress, the weak form of stress balance, and the weak form of microforce balance, the Y-periodicity is used as additional, as well as standard, boundary conditions at the boundary of a unit cell. Then, by applying a tangent modulus method, a set of finite element equations is obtained from the homogenization equations. The computational stability and efficiency of this finite element discretization are verified by analyzing a model composite. Furthermore, a model polycrystal is analyzed for investigating the grain size dependence of polycrystal plasticity. In this analysis, the micro-clamped, micro-free, and defect-free conditions are considered as the additional boundary conditions at grain boundaries, and their effects are discussed.  相似文献   

14.
The strain gradient exists near a crack tip may significantly influence the near-tip stress field. In this paper, the strain gradient and the internal length scales are introduced into the basic equations of mode III crack by the modified gradient elasticity (MGE). By using a complex function approach, the analytical solution of stress fields for mode III crack problem is derived within MGE. When the internal length scales vanish, the stress fields can be simplified to the stress fields of classical linear elastic fracture mechanics. The results show that the singularity of the shear stress is made up of two parts, r−1/2 part and r−3/2 part, and the sign of the stress σyz changes. With the increase of lx, the peak value of σyz decrease and its location moves farther from the fracture vertex. The influence of strain gradient for mode III crack problem cannot be ignored.  相似文献   

15.
The torsion problem of elastic bars of any cross-sections is discussed, into the context of strain gradient elasticity. It is proven that torsion problem is feasible only for the bars with circular cross-sections. For the other bars (with non-circular cross sections), the non-classical boundary conditions are not satisfied.  相似文献   

16.
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.  相似文献   

17.
A deformation plasticity model is used to implement the elastic compensation (iterative use of linearly elastic models to approximate elastic/plastic response) simulation of small axisymmetric circular plate deformations by the finite element method. Representative numerical results are presented graphically and used to demonstrate the utility of the approach.  相似文献   

18.
19.
Force multipoles are employed to represent various types of defects and physical phenomena in solids: point defects (interstitials, vacancies), surface steps and islands, proteins on biological membranes, inclusions, extended defects, and biological cell interactions among others. In the present work, we (i) as a prototype simple test case, conduct quantum mechanical calculations for mechanics of defects in graphene sheet and in parallel, (ii) formulate an enriched continuum elasticity theory of force dipoles of various anisotropies incorporating up to second gradients of strain fields (thus accounting for nonlocal dispersive effects) instead of the usual dispersion-less classical elasticity formulation that depends on just the strain (c.f. Peyla, P., Misbah, C., 2003. Elastic interaction between defects in thin and 2-D films. Eur. Phys. J. B. 33, 233-247). The fundamental Green's function is derived for the governing equations of second gradient elasticity and the elastic self and interaction energies between force dipoles are formulated for both the two-dimensional thin film and the three-dimensional case. While our continuum results asymptotically yield the same interaction energy law as Peyla and Misbah for large defect separations (∼1/rn for defects with n-fold symmetry), the near-field interactions are qualitatively far more complex and free of singularities. Certain qualitative behavior of defect mechanics predicted by atomistic calculations are well captured by our enriched continuum models in contrast to classical elasticity calculations. For example, consistent with our atomistic calculations of defects in isotropic graphene, even two dilation centers show a finite interaction (as opposed to classical elasticity that predicts zero interaction). We explicitly find the physically consistent result that the self-energy of a defect is equivalent to half the interaction energy between two identical defects when they “merge” into each other. The atomistic, classical elastic and the enriched continuum predictions are thoroughly compared for two types of defects in graphene: Stone-Wales and divacancy.  相似文献   

20.
It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that in- corporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of clas- sical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradi- ents and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gra- dients. The theories proposed by Muhlhaus and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy ther- modynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rate- independent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a compa- rable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号