首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new type of chiral cobalt salen complexes bearing BF3 Lewis acid proved to be reactive and enantioselective in the hydrolytic resolution of terminal epoxides. The polymer type salen catalysts also showed a high enantioselectivity in the same reaction.  相似文献   

2.
The inactive chiral (salen)Co complex is easily activated by InCl3 and TlCl3 Lewis acids by forming heterometallic salen complexes. These complexes show very high catalytic activity for the synthesis of enantiomerically enriched terminal epoxides (>99% ee) and 1,2‐diols simultaneously via hydrolytic kinetic resolution. Strong synergistic effects of different Lewis acids, Co‐In and Co‐Tl, were exhibited in the catalytic process. The system described is very simple and efficient.  相似文献   

3.
Chiral Co(III) salen catalysts bearing PF6, BF4 or Br counterions proved to be reactive and enantioselective in the hydrolytic resolution of terminal epoxides. The catalysts could be recovered and reused several times without further treatment after reaction, showing no loss of activity and enantioselectivity.  相似文献   

4.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

5.
Self‐assembled copper(II) complexes are described as effective catalysts for nitroaldol (Henry) reactions on water. The protocol involves a heterogeneous process and the catalysts can be recovered and recycled without loss of activity. Further, C2‐symmetric N,N′‐substituted chiral copper(II) salan complexes are found to be more effective catalysts than chiral copper(II) salen complexes for reactions in homogeneous catalysis, with high enantioselectivities. The reactions involve bifunctional catalysis, bearing the properties of a Brønsted base, as well as a Lewis acid, to effect the reaction in the absence of external additives.  相似文献   

6.
《Tetrahedron: Asymmetry》2003,14(7):823-836
Intramolecular cyclopropanation of alkenyl α-diazoacetates and alkenyl diazomethyl ketones was examined by using optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes as catalysts. For the cyclization of 2-alkenyl α-diazoacetates, Co(II)(salen) complexes 9 and 10 were found to be superior catalysts to the corresponding (ON+)Ru(II)(salen) complexes 4 and 5. On the other hand, (ON+)Ru(II)(salen) complex 2 was found to be the catalyst of choice for the cyclization of 3-alkenyl diazomethyl ketones, and complex 4 was found to be a good catalyst for the cyclization of (E)-4-alkenyl diazomethyl ketones. The present study demonstrates that metallosalen complexes, especially optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes, can serve as efficient catalysts for the cyclization of alkenyl diazocarbonyl compounds, if a suitable salen ligand is used as the chiral auxiliary.  相似文献   

7.
A new series of metal complexes of salicyladimine ligands with Pd(II) and Co(II) have been prepared and characterized by different techniques (elemental analysis, UV-vis, FT-IR, 1H NMR spectra, magnetic susceptibility measurements). Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Pd(II) metal complex and tetrahedral geometry for Co(II) metal complex. The synthesized Pd(II) and Co(II) complexes were also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [M(L3)2] (M = Pd or Co) complexes bearing 5-methyl substituent on the aryl ring are more efficient than the other Pd(II) and Co(II) metal complexes for the formation of cyclic organic carbonates from carbon dioxide. These catalysts, [Pd(L3)2] and [Co(L3)2] complexes and location (p-position of phenoxy) of electron donating methyl substituent in particular, effectively promote the of carbon dioxide activation with liquid epoxides under solvent-free homogeneous conditions. Furthermore, [Pd(L3)2] can be reused more than eight times with a minimal loss of its original catalytic activities.  相似文献   

8.
Michael W. Fennie 《Tetrahedron》2005,61(26):6249-6265
Metal complexes of C2-symmetric Lewis acid/Lewis base salen ligands provide bifunctional activation resulting in rapid rates in the enantioselective addition of diethylzinc to aldehydes (up to 92% ee). Further experiments probed the reactivity of the individual Lewis acid and Lewis base components of the catalyst and established that both moieties are essential for asymmetric catalysis. These catalysts are also effective in the asymmetric addition of diethylzinc to α-ketoesters. This finding is significant because α-ketoesters alone serve as their own ligands to accelerate racemic 1,2-carbonyl addition of Et2Zn and racemic carbonyl reduction. The latter proceeds via a metalloene pathway, and often accounts for the predominant product. Singular Lewis acid catalysts do not accelerate enantioselective 1,2-addition over these two competing paths. The bifunctional amino salen catalysts, however, rapidly provide enantioenriched 1,2-addition products in excellent yield, complete chemoselectivity, and good enantioselectivity (up to 88% ee). A library of the bifunctional amino salens was synthesized and evaluated in this reaction. The utility of the α-ketoester method has been demonstrated in the synthesis of an opiate antagonist.  相似文献   

9.
Here we describe an unprecedented synthetic approach to poly(styrene)‐supported chiral salen ligands by the free radical polymerization of an unsymmetrical styryl‐substituted salen monomer (H2salen=bis(salicylidene)ethylenediamine). The new method allows for the attachment of salen moieties to the polymer main chain in a flexible, pendant fashion, avoiding grafting reactions that often introduce ill‐defined species on the polymers. Moreover, the loading of the salen is controlled by the copolymerization of the styryl‐substituted salen monomer with styrene in different ratios. The polymeric salen ligands are metallated with cobalt(II ) acetate to afford the corresponding supported Co–salen complexes, which are used in the hydrolytic kinetic resolution of racemic epichlorohydrin, exhibiting high reactivity and enantioselectivity. Remarkably, the copolymer‐supported Co–salen complexes showed a better catalytic performance (>99 % ee, 54 % conversion, one hour) in comparison to the homopolymeric analogues and the small molecule Co–salen complex. The soluble poly(styrene)‐supported catalysts were recovered by precipitation after the catalytic reactions and were recycled three times to afford almost identical enantiomeric excesses as the first run, with slightly reduced reaction rates.  相似文献   

10.
《Tetrahedron: Asymmetry》2003,14(22):3589-3592
The hydrolytic kinetic resolution of racemic terminal epoxides utilizing chiral (salen)Co(III) catalysts provides practical access to enantiopure epoxides and diols. However, general issues surrounding catalyst activation combined with the specific problem of racemization of epichlorohydrin served to make the large-scale production of (R)- or (S)-epichlorohydrin difficult and uneconomical. A process for the large-scale production and isolation of active (salen)Co(III)OAc catalyst and a method of catalyst reduction after reaction using ascorbic acid have been developed to overcome these issues.  相似文献   

11.
A series of novel bis-urea-functionalized (salen)Co complexes has been developed. The complexes were designed to form self-assembled structures in solution through intermolecular urea-urea hydrogen-bonding interactions. These bis-urea (salen)Co catalysts resulted in rate acceleration (up to 13 times) in the hydrolytic kinetic resolution (HKR) of rac-epichlorohydrin in THF by facilitating cooperative activation, compared to the monomeric catalyst. In addition, one of the bis-urea (salen)Co(III) catalyst efficiently resolves various terminal epoxides even under solvent-free conditions by requiring much shorter reaction time at low catalyst loading (0.03-0.05 mol %). A series of kinetic/mechanistic studies demonstrated that the self-association of two (salen)Co units through urea-urea hydrogen bonds was responsible for the observed rate acceleration. The self-assembly study with the bis-urea (salen)Co by FTIR spectroscopy and with the corresponding (salen)Ni complex by (1)H NMR spectroscopy showed that intermolecular hydrogen-bonding interactions exist between the bis-urea scaffolds in THF. This result demonstrates that self-assembly approach by using non-covalent interactions can be an alternative and useful strategy toward the efficient HKR catalysis.  相似文献   

12.
Covalent attachment of quinine to a salen framework through a racemic linker gave a new mixed ligand in a 1:1 diastereomeric mixture, from which an active Lewis acid-Lewis base (LA*-LB*) bifunctional catalyst derived from Co(II) was discovered by the screening of metal complexes. The remarkable intramolecular bifunctional catalytic activity (1 mol % catalyst loading) of the new catalyst was demonstrated using a proof-of-principle reaction. [reaction: see text].  相似文献   

13.
A new dinuclear chiral Co(salen) complexes bearing group 13 metals have been synthesized and characterized. The easily prepared complexes exhibited very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides with H2O, chloride ions and carboxylic acids and consequently provide enantiomerically enriched terminal epoxides (>99% ee). It also catalyzes the asymmetric cyclization of ring opened product, to prepare optically pure terminal epoxides in one step. The homogeneous dinuclear chiral Co(salen) have been covalently immobilized on MCM-41. The potential benefits of heterogenization include facilitation of catalyst separation and recyclability requiring very simple techniques. The system described is very efficient.  相似文献   

14.
Schiff‐base–zinc halide complexes (ZnX2/ 1 ) thermal‐latently catalyze the reaction of glycidyl phenyl ether (2) and 1‐propoxyethyl 2‐ethylhexanoate (3) that proceeds at moderately elevated temperatures. The catalysis by the ZnX2/ 1 complexes proceeds via the thermal dissociation of 3 to produce the corresponding carboxylic acid that nucleophilically attacks 2 predominantly over the thermally dissociated vinyl ether. ZnX2/ 1 complexes catalyze both the dissociation of 3 to produce the carboxylic acid intermediate and its addition to 2 . Although conventional latent catalysts for this reaction exhibit Lewis acidities under ambient conditions that are responsible to the gradual degradation of hemiacetal esters and the polymerization of epoxides, a mixture of 2 , 3 , and ZnX2/ 1 can be stored for 3 months at ambient conditions. The stored mixture is as active as the freshly prepared mixture, keeping the excellent activity and latency of ZnX2/ 1 . As well as the model reaction, the thermally latent polyaddition of bisphenol A diglycidyl ether (9) and di‐1‐propoxyethyl adipate (10) is also promoted with ZnCl2/ 1 at a moderate elevated temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3370–3379, 2007  相似文献   

15.
The binuclear chiral (salen) Co complexes bearing Lewis acids of Al and Ga catalyze regio- and enantioselective ring opening of terminal epoxides with carboxylic acids. The ring opened product of epichlorohydrin with carboxylic acids followed by cyclization step in the presence of catalyst and base represent straightforward, efficient methods for the synthesis of enatiomerically enriched (>99% ee) valuable terminal epoxides. Strong synergistic effects of different Lewis acid of Co-Al and Co-Ga were exhibited in the catalytic process.  相似文献   

16.
The bimetallic aluminium(salen) complex [(Al(salen))2O] is known to catalyse the reaction between epoxides and heterocumulenes (carbon dioxide, carbon disulfide and isocyanates) leading to five‐membered ring heterocycles. Despite their apparent similarities, these three reactions have very different mechanistic features, and a kinetic study of oxazolidinone synthesis combined with previous kinetic work on cyclic carbonate and cyclic dithiocarbonate synthesis showed that all three reactions follow different rate equations. An NMR study of [Al(salen)]2O and phenylisocyanate provided evidence for an interaction between them, consistent with the rate equation data. A variable‐temperature kinetics study on all three reactions showed that cyclic carbonate synthesis had a lower enthalpy of activation and a more negative entropy of activation than the other two heterocycle syntheses. The kinetic study was extended to oxazolidinone synthesis catalysed by the monometallic complex Al(salen)Cl, and this reaction was found to have a much less negative entropy of activation than any reaction catalysed by [Al(salen)]2O, a result that can be explained by the partial dissociation of an oligomeric Al(salen)Cl complex. A mechanistic rationale for all of the results is presented in terms of [Al(salen)]2O being able to function as a Lewis acid and/or a Lewis base, depending upon the susceptibility of the heterocumulene to reaction with nucleophiles.  相似文献   

17.
Two polymeric aluminium salen complexes in where the backbones are either a partially crosslinked polystyrene [(Al(salen)/PS)] or poly(ethylene glycol bismethacrylate) [(Al(salen)/PEA)] have been synthesised and used for the carbon dioxide insertion into epoxides to form cyclic carbonates. The catalytic activity of these polymers is similar to that of the unsupported aluminium salen complexes, and the polymeric catalysts can be easily separated from the reaction mixture and reusable in consecutives runs. The activity and reusability of the polymeric salen complex depends on the nature of the polymer: PEA being a polymer with a high oxygen content in the backbone enhances the initial activity as compared to PS, but Al(salen)/PEA exhibits lower stability as compared to Al(salen)/PS and a Al depletion occurs upon use. The presence of nucleophiles such as N-methylimidazole or N,N-dimethylaminopyridine in excess increases the catalytic activity of the polymeric Al(salen) catalyst. Also polymeric nucleophiles have been found to be suitable reusable co-catalysts for this reaction.  相似文献   

18.
The surfactantCo(III) complexes of the type cis-[Co(en)2AX]2+ (A?=?Tetradecylamine, X?=?Cl?,?Br?) were synthesised from corresponding dihalogeno complexes by the ligand substitution method. The critical micelle concentration (CMC) values of these surfactant complexes in aqueous solution were obtained from conductance measurements. The kinetics and mechanism of iron(II) reduction of surfactantCo(III) complexes, cis-[Co(en)2(C14H29NH2)Cl](ClO4)2 and cis-[Co(en)2(C14H29NH2)Br] (ClO4)2 ions were studied spectrophotometrically in an aqueous acid medium by following the disappearance of Co(III) using an excess of the reductant under pseudo-first-order conditions: [Fe(II)]?=?0.25?mol?dm?3, [H+]?=?0.1?mol?dm?3, [μ]?=?1.0?mol?dm?3 ionic strength in a nitrogen atmosphere at 303, 308 and 313?K. The reaction was found to be of second order and showed acid independence in the range [H+]?=?0.05–0.25?mol?dm?3. The second-order rate constant increased with surfactant–Co(III) concentration and the presence of aggregation of the complex itself altered the reaction rate. The effects of [Fe(II)], [H+] and [μ] on the rate were determined. Activation and thermodynamic parameters were computed. It is suggested that the reaction of [Fe(II)] with Co(III) complex proceeds by an inner-sphere mechanism.  相似文献   

19.
Chiral Co(salen) complexes bearing the Lewis acid of group 13 can efficiently catalyze the reactions of carbon dioxide with epoxides in the presence of catalytic amounts of alkali metal salts, quaternary ammonium halide or ionic liquids. They exhibited excellent activity for producing enantiomerically enriched cyclic carbonates.  相似文献   

20.
Reversal of enantioselectivity in asymmetric Henry reactions was achieved with novel chiral C2-symmetric salen ligands bearing morpholine moieties by changing the Lewis acid center from Co(II) to Yb(III). The possible transition state models were supported by mass spectrometry experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号