首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently reported new class of ruthenium complexes containing 2,2′‐bipyridine and a dipyrrin ligand in the coordination sphere exhibit both strong metal‐to‐ligand charge‐transfer (MLCT) and π–π* transitions. Quantitative analysis of the resonance Raman scattering intensities and absorption spectra reveals only weak electronic interactions between these states despite direct coordination of the bipyridyl and dipyrrin ligands to the central ruthenium atom. On the basis of DFT calculations and time‐dependent DFT (TD‐DFT), we propose that the electronic excited states closely resemble “pure” MLCT and π–π* states. Resonance Raman intensity analysis demonstrates that a large amplitude transannular torsional motion provides a mechanism for relaxation on the π–π* excited‐state surface. We assert that this result is generally applicable to a range of dipyrrin complexes such as boron–dipyrrin and metallodipyrrin systems. Despite the large torsional distortion between the phenyl ring and the dipyrromethene plane, π–π* excitation extends out onto the phenyl ring which may have important consequences in solar‐energy‐conversion applications of ruthenium–dipyrrin complexes.  相似文献   

2.
Density functional theory (DFT) calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of four iron(II) diimine complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. The energy of the orbitals correlates with electrochemical redox potentials of the complexes. Time-dependent density functional theory (TDDFT) calculations reveal ligand centered (LC) and metal-to-ligand charge transfer (MLCT) at higher energy than experimentally observed. TDDFT calculations also reveal the presence of d-d transitions which are buried under the MLCT and LC transitions. The difference in chemical and photophysical behavior of the iron complexes compared to that of their ruthenium analogues is also addressed.  相似文献   

3.
The first hyperpolarizability and electronic excitation spectrum of sesquifulvalene and a sesquifulvalene ruthenium complex have been computed and analyzed with use of time-dependent density-functional theory. A new orbital decomposition scheme is introduced that allows the computed first hyperpolarizability to be related to the electronic structure of complex molecules. The analysis shows that the first hyperpolarizability of sesquifulvalene is not associated with the first intense absorption, with HOMO-1 --> LUMO+1 character, but is dominated by the lowest energy transition, with HOMO --> LUMO character, despite its very low intensity. In the ruthenium complex, the analysis reveals that the strong enhancement of the nonlinear optical response compared to free sesquifulvalene should not be attributed to the effect of complexation on the hyperpolarizability of sesquifulvalene. The strong hyperpolarizability originates from MLCT transitions from ruthenium d-orbitals to an empty orbital located at the seven ring of sesquifulvalene, transitions that have no analogue in free sequifulvalene.  相似文献   

4.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

5.
Geometry optimizations of the quinoline-based platinum (II) complexes (1-R, 2-R) and their related calculations on excited state energies, electronic absorption spectra and orbital populations have been carried out by the hybrid density functional theory (DFT) and its time-dependent approach (TD-DFT). The solvent effects on excitation energies are taken into account using the conductor-like polarizable continuum model (C-PCM). The red-shifted level of absorption bands, energy gaps between the singlet ground state (S1) and the first triplet excited state (T1) for each examined complex have been elaborated thoroughly as well. We find that the quinoline-8-thoil (ligand 2) induces much more significant red-shifted level than 8-hydroxyquinoline (ligand 1), and singlet-triplet splitting energy gaps of all examined complexes are bigger than threshold energy to yield singlet oxygen. It is revealed that the electronic red-shifted absorption bands originate from metal-to-ligand charge transfer (MLCT) transitions, and also shown that the quinoline-based Pt (II) complexes with strong donor groups could be considered as potential candidates for unearthing of novel photosensitizers in photodynamic therapy (PDT).  相似文献   

6.
蔡静  曾薇  李权  骆开均  赵可清 《化学学报》2009,67(20):2301-2308
使用含时密度泛函理论(TDDFT)B3LYP方法计算了IB, IIB, VIIIB过渡金属与8-羟基喹啉络合(MQ)后, 配合物的电子光谱以及二阶非线性光学性质. 结果表明, 掺杂过渡金属后, 形成络合物的能隙值减小100~150 kJ/mol, 最大吸收波长红移150~200 nm左右. 电子从基态到激发态的跃迁主要为p→p*, n→p*跃迁, 属于LLCT, MLCT过程. IB的络合物MQ以及VIIIB的络合物MQ3表现出良好的非线性光学性质.  相似文献   

7.
A series of dye molecules was designed theoretically. Particularly, azoles and their derivatives were chosen as the modifying groups linking to ancillary ligands of [Ru(dcbpyH2)2(NCS)2](N3, dcbpy=4,4′-dicarboxy- 2,2′-bipyridine; NCS=thiocyanato). Density functional theory(DFT) based approaches were applied to exploring the electronic structures and properties of all these systems. The dye molecule with 1,2,4-triazole groups which exhibits a very high intensity of absorption in visible region, was obtained. Time-dependent DFT(TD-DFT) results indicate that the ancillary ligand dominates the molecular orbital(MO) energy levels and masters the absorption transition nature to a certain extent. The deprotonation of anchoring ligand not only affects the frontier MO energy levels but also controls the energy gaps of the highest occupied MO(HOMO) to the lowest unoccupied MO(LUMO) and LUMO to LUMO+1 orbital. If the gap between LUMO-LUMO+1 is small enough, the higher efficiency of dye-sensitized solar cell(DSSC) should be expected.  相似文献   

8.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

9.
UV-vis absorption and resonance Raman spectra of the complexes fac-[Re(Cl)(CO)3(stpy)2] and fac-[Re(stpy)(CO)3(bpy)]+ (stpy = t-4-styrylpyridine, bpy = 2,2'-bipyridine) show that their lowest absorption bands are dominated by stpy-localized intraligand (IL) pi pi* transitions. For the latter complex a Re --> bpy transition contributes to the low-energy part of the absorption band. Optical population of the 1IL excited state of fac-[Re(Cl)(CO)3(stpy)2] is followed by an intersystem crossing (< or =0.9 ps) to an 3IL state with the original planar trans geometry of the stpy ligand. This state undergoes a approximately 90 degrees rotation around the stpy C=C bond with a 11 ps time constant. An electronically excited species with an approximately perpendicular orientation of the phenyl and pyridine rings of the stpy ligand is formed. Conversion to the ground state and isomerization occurs in the nanosecond range. Intraligand excited states of fac-[Re(stpy)(CO)3(bpy)]+ show the same behavior. Moreover, it was found that the planar reactive 3IL excited state is rapidly and efficiently populated after optical excitation into the Re --> bpy 1MLCT excited state. A 1MLCT --> 3MLCT intersystem crossing takes place first with a time constant of 0.23 ps followed by an intramolecular energy transfer from the ReI(CO)3(bpy) chromophore to a stpy-localized 3IL state with a 3.5 ps time constant. The fast rate ensures complete conversion. Coordination of the stpy ligand to the ReI center thus switches the ligand trans-cis isomerization mechanism from singlet to triplet (intramolecular sensitization) and, in the case of fac-[Re(stpy)(CO)3(bpy)]+, opens an indirect pathway for population of the reactive 3IL excited state via MLCT states.  相似文献   

10.
一种新型吡嗪铱(Ⅲ)配合物的合成及其磷光性质   总被引:2,自引:0,他引:2  
利用5-甲基-2,3-二苯基吡嗪(MDPP)和水合三氯化铱(IrCl3•H2O),合成了一种新型吡嗪铱配合物Ir (MDPP)2 (acac).通过1H NMR、元素分析和质谱方法对配合物结构进行了表征,并研究了配合物的吸收光谱和光致发光光谱.结果表明,配合物Ir (MDPP)2(acac)在393和528 nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收;在588 nm 处有较强的金属配合物三重态的磷光发射,是一种绿色磷光材料.  相似文献   

11.
We have synthesized ruthenium(II)– and osmium(II)–polypyridyl complexes ([M(bpy)2 L ]2+, in which M=OsII or RuII, bpy=2,2′‐bipyridyl, and L =4‐(2,2′‐bipyridinyl‐4‐yl)benzene‐1,2‐diol) and studied the interfacial electron‐transfer process on a TiO2 nanoparticle surface using femtosecond transient‐absorption spectroscopy. Ruthenium(II)‐ and osmium(II)‐based dyes have a similar molecular structure; nevertheless, we have observed quite different interfacial electron‐transfer dynamics (both forward and backward). In the case of the RuII/TiO2 system, single‐exponential electron injection takes place from photoexcited nonthermalized metal‐to‐ligand charge transfer (MLCT) states. However, in the case of the OsII/TiO2 system, electron injection takes place biexponentially from both nonthermalized and thermalized MLCT states (mainly 3MLCT states). Larger spin–orbit coupling for the heavier transition‐metal osmium, relative to that of ruthenium, accounts for the more efficient population of the 3MLCT states in the OsII‐based dye during the electron‐injection process that yields biexponential dynamics. Our results tend to suggest that appropriately designed OsII–polypyridyl dye can be a better sensitizer molecule relative to its RuII analogue not only due to much broader absorption in the visible region of the solar‐emission spectrum, but also on account of slower charge recombination.  相似文献   

12.
Special efforts were devoted to improve the absorption behavior of AR20 in visible region. Density functional theory (DFT)‐based approaches were applied to explore the electronic structure properties of AR20 and its derivatives. Time‐dependent DFT results indicate that the ancillary ligand controls the molecular orbital (MO) energy levels and masters the absorption transition nature. The deprotonation of anchoring ligand not only affects the frontier MO energy levels but also determines the energy gaps of highest occupied MO–lowest unoccupied MO (LUMO) and LUMO–LUMO+1. Introducing thiophene groups into ancillary ligands would enhance the efficiency of the final dye‐sensitized solar cell (DSSC). The absorption intensity of the thiophene substituted derivatives of AR20 is irrelevant with environment circumstance change, such as pH value. This special nature prognosticates the thiophene‐substituted derivatives of AR20 which would have a broad application in DSSC. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
ZINDO/S calculations on cis‐Ru(4,4′‐dicarboxy‐2,2′‐bipyridine)2(X)2 and cis‐Ru(5,5′‐dicarboxy‐2,2′‐bipyridine)2(X)2 complexes where X = Cl?, CN?, and NCS? reveal that the highest occupied molecular orbital (HOMO) of these complexes has a large amplitude on both the nonchromophoric ligand X and the central ruthenium atom. The lowest‐energy metal to ligand charge transfer (MLCT) transition in these complexes involves electron transfer from ruthenium as well as the halide/pseudohalide ligand to the polypyridyl ligand. The contribution of the halide/pseudohalide ligand(X) to the HOMO affects the total amount of charge transferred to the polypyridyl ligand and hence the photoconversion efficiency. The virtual orbitals involved in the second MLCT transition in 4,4′‐dicarboxy‐2,2′‐bipyridine complexes have higher electron density on the ? COOH group compared to the lowest unoccupied molecular orbital and hence a stronger electronic coupling with the TiO2 surface and higher injection efficiency at shorter wavelengths. In comparison, the virtual orbitals involved in the second MLCT transition in 5,5′‐dicarboxy‐2,2′‐bipyridine complexes have lesser electron density on the ? COOH group, leading to a weaker electronic coupling with the TiO2 surface and therefore lower efficiency for electron injection at shorter wavelengths for these complexes. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.  相似文献   

15.
A fullerene derivative (5) in which a dinuclear ruthenium complex is covalently linked to a fulleropyrrolidine (FP) through a rigid spacer has been prepared through azomethine ylide cycloaddition to C60. Electrochemical and photophysical studies revealed that ground-state electronic interactions between the bimetallic ruthenium chromophore and the FP moiety are small. The absorption spectrum of 5 displays a metal-to-ligand charge transfer (MLCT) transition at about 620 nm in CH2Cl2 which is shifted by nearly 160 nm relative to that of a previously reported mononuclear dyad (8). The photophysical investigations have also shown that both in dichloromethane and acetonitrile the photoexcited MLCT state of dyad 5 transforms into the fullerene triplet excited state with a quantum yield of 0.19 and that, contrary to mononuclear dyad 8, electron transfer, if any under the applied conditions, is negligible relative to energy transfer.  相似文献   

16.
The synthesis of new ruthenium(II) terpyridine bipyridine complexes bearing a phosphorus(III) ligand is presented. The steric and electronic properties of the phosphorus ligand were varied using aminophosphines, alkyl and aryl phosphites and the bulky tri(isopropyl)phosphine. All complexes were characterized by multi-nuclear NMR spectroscopy, mass spectrometry and X-ray diffraction analysis. The electronic properties of the complexes were probed by cyclic voltammetry, absorption and luminescence spectroscopy. The complexes do not show luminescence at room temperature, whereas at 77 K in an alcoholic matrix, emission is observed in the range 600-650 nm with lifetimes of 3.5-5.5 micros, originating from 3MLCT states. The MLCT transition spans over 65 nm, which corresponds to a variation of 0.4 eV in the HOMO-LUMO gap. The oxidation potential of the ruthenium varies over a broad range of 290 mV, from +1.32 V vs. SCE with L = PiPr3 to +1.61 V vs. SCE with L = P(OPh)3. This range is unprecedented upon the variation of a single monodentate ligand coordinated by the same heteroatom in the same oxidation and charge states. This work underlines the specific capacity of phosphorus in bringing up a large variety of electronic properties by changing its substituents.  相似文献   

17.
Excitation of ruthenium(II) tris(phenanthroline) in the visible region results in the tranfer of an electron from the central atom toward one of the ligands. To probe this excited state, we have performed pump-induced absorption and circular dichroism in the ultraviolet wavelengths, in the intraligand pi-pi* transition region. On top of the bleaching of the ground state transitions, new structures appear in the absorption and CD spectra. Thanks to a classical calculation based on the polarizability theory, we can interpret these features as the result of a strong reduction of the excitonic coupling due to a blue shift of the pi-pi* transition in the reduced ligand accompanied by the onset of new excited-state transitions.  相似文献   

18.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions.  相似文献   

19.
孙树全 《应用化学》2009,26(6):726-729
本文合成了一种多联吡啶钌配合物(bpy)2Ru(phenCl4)(PF6)2,bpy为2,2′-联吡啶, phenCl4为3,4,7,8-四氯-1,10-邻菲罗啉,并用元素分析、红外光谱、核磁共振谱对其结构进行了表征。此化合物在紫外和可见光区都有吸收,在可见光区的最大吸收波长是440nm,这是典型的金属到配体(MLCT)的跃迁,其光致发光性能也显示出MLCT迁移特征,并且随溶剂不同,其最大发射波长从630nm变化到649nm。值得注意的是,此配合物的电致化学发光性能受pH影响不大,这与传统的随pH增大电致化学发光强度增大的联吡啶钌不同,尤其在强碱条件下,其背景电致化学发光很小。  相似文献   

20.
The synthesis and the spectroscopic properties of a bichromophoric ruthenium trisbipyridyl-1,4-diethynylenebenzene-pyrene system (Ru-b-Py) and the corresponding pyrene ligand (b-Py) are reported. The ruthenium model systems Ru-b-OH, Ru-b-Ph are also presented. UV–Vis absorption and emission at room and low temperature and time-resolved spectroscopy are discussed. For the Ru-b-Py dyad, a mixing of the 3MLCT state of the ruthenium-based component and the triplet state of pyrene, 3Py, is observed. Time-resolved transient absorption studies performed on the Ru-b-Py and on the b-Py ligand show that the lowest energy absorption is due to the population of the triplet state localized on the pyrene-component. Time-resolved studies also evidenced a relatively slow forward triplet equilibration rate, in the order of 2×105?s-1 (5?μs), and an even slower back energy transfer rate, 3.3×104?s-1, still faster than the intrinsic decay time of the pyrene (200?μs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号