首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the Leonov viscoelastic constitutive equation, oscillatory shear flow of elastic fluids in the linear and nonlinear regimes has been considered. The Fourier components and associated phase angles of the shear and normal components of the elastic strain tensor have been found as functions of frequency and deformation amplitude in the range usually employed in experiment, and are presented in a form convenient for further rheological applications. In the linear case, the results correspond to many known theories. In the nonlinear case, the theoretical results have been compared with experiments, on different polymeric systems, with very good agreement being obtained for the shear stress in polymeric solutions but only qualitative agreement for the shear stress and first normal-stress difference in polymer melts.  相似文献   

2.
The monohydroxy alcohol 5-methyl-3-heptanol is studied using rheology at ambient pressure and using dielectric spectroscopy at elevated pressures up to 1.03 GPa. Both experimental techniques reveal that the relaxational behavior of this liquid is intermediate between those that show a large Debye process, such as 2-ethyl-1-hexanol, or a small Debye-like feature, such as 4-methyl-3-heptanol, with which comparisons are made. Various phenomenological approaches assigning a time scale for the rheological signature of supramolecular dynamics in monohydroxy alcohols are discussed.  相似文献   

3.
Self-healing materials exhibit the ability to repair and to recover their functionality upon damage. Here, we report on an investigation into preparation and characterization of shape memory assisted self-healing coatings. We built on past work in which poly(ε-caprolactone) electrospun fibers were infiltrated with a shape memory epoxy matrix and delve into fabricating and characterizing a coating with the same materials, but employing a blending approach, polymerization induced phase separation. After applying controlled damage, the ability of both coatings to self-heal upon heating was investigated. In both methods, coatings showed excellent thermally induced crack closure and protection against corrosion, with the blend approach being more suitable for large-scale applications given its process simplicity. Two different approaches to the preparation of shape memory-based self-healing coatings were compared for their ability to heal structurally and functionally by heating. These two approaches, electrospinning versus polymerization-induced phase separation were found to feature comparable and quite complete healing, with the latter system offering the advantage of facile processing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1415–1426  相似文献   

4.
Reversible, shear-induced gelation of semi-dilute aqueous colloidal dispersions consisting of monodisperse discoid particles (Laponite) and weakly adsorbing polymer (polyethylene oxide) is studied through a combination of small angle neutron scattering and oscillatory shear. When shaken the samples undergo a dramatic transition from a low viscosity fluid to a self-supporting, turbid gel. This complex non-linear behavior is found to occur over a narrow composition regime near a composition commensurate with saturation of the clay surface with polymer. Through a combination of SANS and rheology, shear gelation is found to occur through the deformation of large stable flocs that expose fresh surface area for the formation of new polymer bridges. At rest, the temporary shear-induced flocs slowly fractionate with time as the polymer desorbs from the clay surface. The shear-induced gelation is time reversible and strongly temperature-dependent suggesting that relaxation is an activated process. Samples showing shear induced gelation are also able to form stiff stable gels which are characteristically similar to pure clay dispersions.  相似文献   

5.
Nonequilibrium molecular-dynamics simulations are used to investigate the molecular shape of dendrimers and linear polymers in a melt and under shear. Molecules are modeled at the coarse-grained level using a finitely extensible nonlinear elastic bead-spring model. The shape of dendrimers and linear polymers at equilibrium and undergoing planar Couette flow is analyzed quantitatively and it is related to the shear viscosity. The shape of dendrimers responds differently to the influence of shear compared with linear polymers of equivalent molecular mass. However, in both cases the transition from Newtonian to non-Newtonian viscosity behavior corresponds to significant changes in molecular symmetry. This suggests that a shape analysis could be used to estimate the onset of shear thinning in polymers.  相似文献   

6.
Four types of triblock glycols [(CL)4.5-PEG-(CL)4.5, (CL)4.5-PTAd-(CL)4.5, (CL)4.5-PTMG-(CL)4.5, and (CL)4.5-PPG-(CL)4.5, Mn=3,000] were synthesized by end-capping reactions of -caprolactone (CL) and poly(ethylene) glycol (PEG, Mn=2,000), poly(tetramethylene adipate) glycol (PTAd, Mn=2,000), poly(tetramethylene) glycol (PTMG, Mn=2,000), or polypropylene glycol (PPG, Mn=2,000)]. Waterborne polyurethanes (WBPUs) were prepared by polyaddition reaction using 4,4-dicyclohexylmethane diisocyanate (H12MDI), 2,2-bis (hydromethyl) propionic acid (DMPA), ethylene diamine (EDA), triethyl amine (TEA), and the triblock glycol. Studies have been conducted on the effects of triblock glycol type on the colloidal properties of dispersion, the hardness and mechanical properties of WBPU films, the water vapor permeability (WVP), and water resistance (WR) of WBPU-coated nylon fabrics. The WVP (%WVP based on control nylon fabric) of WBPU-coated nylon fabrics based on (CL)4.5-PEG-(CL)4.5, (CL)4.5-PTAd-(CL)4.5, (CL)4.5-PTMG-(CL)4.5 and (CL)4.5-PPG-(CL)4.5 were 3,975(81), 3,115(62), 3,124(64), and 2,569(52) g/m2 day (%), respectively. However, the WBPU based on (CL)4.5-PEG-(CL)4.5 was not applicable for coating material, because its dispersion and film had relatively high viscosity (3,000 cps at 50°C) and low mechanical properties, respectively. In this work, the triblock glycols (CL)4.5-PTMG-(CL)4.5 and (CL)4.5-PTAd-(CL)4.5 were found to be desirable glycols for water vapor permeable coating materials.  相似文献   

7.
This paper reports the synthesis and characterization of polyurethane (PU)-imide/clay hybrid coatings based on two types of polyester (PE) polyols (PE-1 and PE-2). PE-1 was prepared from neopentyl glycol (NPG), adipic acid (AA) and isophathalic acid (IPA), whereas PE-2 contains NPG, AA, IPA and TMP (trimethylol propane) with the same hydroxyl value 280 as PE-1. Cetyl trimethyl ammonium bromide (CTAB) modified montmorillonite (K10) was used as the organoclay for the synthesis of the hybrid coatings. The organoclay particles (3 wt%) were well-dispersed into the PE matrix by ultrasonication method. Then the isocyanate terminated PU prepolymers were synthesized by the reaction of polyester polyols with hard segments such as 2,4-toluene diisocyanate (TDI) or isophorone diisocyanate (IPDI) in different NCO/OH ratios e.g., 1.6:1, 2:1 and 3:1, respectively. Finally the thermally stable imide rings were incorporated into the PU backbone by complete reaction of excess NCO content present in the PU prepolymer with pyromellitic dianhydride (PMDA). The thermogravimetric analysis (TGA) shows a higher thermal stability for the PU-imide hybrid coatings with respect to the corresponding PU-imide films. A higher NCO/OH ratio has resulted in higher thermal stability. The activation energies of degradation were calculated by the Broido and Coats-Redfern methods, respectively. The dynamic mechanical thermal analysis (DMTA) results show an enhancement in the glass transition temperature value (Tg) for the clay containing hybrid coatings. The surface analysis by angle resolved X-ray photoelectron spectroscopy (AR-XPS) showed an enrichment of the soft segment towards the surface, and an enhancement in the hard segment composition in the hybrid coatings, resulted in phase mixing.  相似文献   

8.
9.
Position annihilation spectroscopy (PAS) was used to measure the relative free-volume fraction of protective epoxy coatings before and after exposure to liquid water at room temperature. The relative free volume fraction determined before water exposure was compared to the equilibrium water uptake of each coating and a correlation was found. The relative free-volume fraction of the epoxy coatings decreased slightly after water exposure. This decrease is contrary to the free volume theory of plasticization, but is consistent with the antiplasticization process. Larger decreases in the relative free volume fraction were sought by repeating the water uptake experiments with nitrobenzene which in the bulk, liquid form quenches ortho-positronium (o-Ps). Since the o-Ps lifetime remained approximately constant and the o-Ps intensity decreased after nitrobenzene absorption, nitrcbenzene is believed to be inhibiting the formation of o-Ps in the epoxy free volume cavities. Larger decreases in the relative free volume fractions were found after nitrobenzene exposure than after water exposure. These larger decreases are due to the fact that nitrobenzene is a better inhibitor of o-Ps formation than water in the epoxy free volume cavities. Larger volume fractions of nitrobenzene were absorbed by the coatings than water and were interpreted to be due to interactions between nitrobenzene and the epoxies. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The preparation of PMMA-clay nanocomposites was investigated by using sodium dodecylbenzenesulfonate (SDS) and potassium peroxodisulfate (KPS) as a surfactant and chain initiator for an in situ emulsion polymerization reaction, respectively. The as-prepared nanocomposites were then characterized by Fourier transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD) patterns and transmission electron microscopy (TEM).It should be noted that the nanocomposite coating containing 1 wt% of clay loading was found to exhibit an observable enhanced corrosion protection on cold-rolled steel (CRS) electrode at higher operational temperature of 50 °C, which was even better than that of uncoated and electrode-coated with PMMA alone at room temperature of 30 °C based on the electrochemical parameter evaluations (e.g., Ecorr, Rp, Icorr, Rcorr and impedance). In this work, all electrochemical measurements were performed at a double-wall jacketed cell, covered with a glass plate, through which water was circulated from a thermostat to maintain a constant operational temperature of 30, 40 and 50 ± 0.5 °C. Moreover, a series of electrochemical parameters shown in Tafel, Nyquist and Bode plots were all used to evaluate PCN coatings at three different operational temperatures in 5 wt% aqueous NaCl electrolyte. The molecular barrier properties at three different operational temperatures of PMMA and PCN membranes were investigated by gas permeability analyzer (GPA) and vapor permeability analyzer (VPA). Effect of material composition on the molecular weight and optical properties of neat PMMA and PCN materials, in the form of solution and membrane, were also studied by gel permeation chromatography (GPC) and UV-vis transmission spectra.  相似文献   

11.
Dielectric properties of bionanocomposites resulting from regulated self-organization of chitosan and nanoparticles of synthetic saponite clay have been investigated by terahertz pulsed spectroscopy. Spectral characteristics of the composites considered in correlation with their structural features, which have been characterized by atomic force microscopy and scanning electron microscopy, depend on the concentration ratio of the components. The study of the effect of temperature on terahertz absorption spectra has led to the conclusion that hydrogen bonding may be involved in the formation of the bionanocomposites.  相似文献   

12.
13.
In this study, high oxygen barrier nanocomposite films were prepared by melt blending of low-density polyethylene/ethylene vinyl alcohol/nanoclay/polyethylene-grafted-maleic anhydride (LDPE/EVOH/nanoclay/LDPE-g-MA). Effect of each component presence was determined by using Box-Behnken experiment design methodology. For all the responses obtained, R 2 was between 0.956 and 0.981 indicating a very good fitting of the experimental data with the response surface method (RSM) in the models. Oxygen transfer rate (OTR) results shown that the addition of EVOH, compatibilizer, and nanoclay in formulations significantly decreases oxygen permeability. The experimental results showed that addition of 30 wt % EVOH, 4 wt % nanoclay, and 5 wt % LDPE-g-MA to the LDPE matrix gave the best oxygen barrier properties. The crystallization behaviors of the samples and thermal analysis have been characterized by using differential scanning calorimetry (DSC). The addition of nanoclay to the blends has resulted in increased crystallinity of LDPE phase. The state of nanoclay dispersion in the samples was examined by the X-ray diffraction (XRD) tests. The reduction of EVOH and nanoclay content, as well as the increase of LDPE-g-MA, has resulted in the better dispersion of nanoclay in the polymer matrix. The morphology of specimens was observed by using energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM).  相似文献   

14.
Riche CT  Marin BC  Malmstadt N  Gupta M 《Lab on a chip》2011,11(18):3049-3052
The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices.  相似文献   

15.
The preparation of carboxymethylated microfibrillated cellulose (MFC) films by dispersion-casting from aqueous dispersions and by surface coating on base papers is described. The oxygen permeability of MFC films were studied at different relative humidity (RH). At low RH (0%), the MFC films showed very low oxygen permeability as compared with films prepared from plasticized starch, whey protein and arabinoxylan and values in the same range as that of conventional synthetic films, e.g., ethylene vinyl alcohol. At higher RH’s, the oxygen permeability increased exponentially, presumably due to the plasticizing and swelling of the carboxymethylated nanofibers by water molecules. The effect of moisture on the barrier and mechanical properties of the films was further studied using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. The influences of the degree of nanofibrillation/dispersion on the microstructure and optical properties of the films were evaluated by field-emission scanning electron microscopy (FE-SEM) and light transmittance measurements, respectively. FE-SEM micrographs showed that the MFC films consisted of randomly assembled nanofibers with a thickness of 5–10 nm, although some larger aggregates were also formed. The use of MFC as surface coating on various base papers considerably reduced the air permeability. Environmental scanning electron microscopy (E-SEM) micrographs indicated that the MFC layer reduced sheet porosity, i.e., the dense structure formed by the nanofibers resulted in superior oil barrier properties.  相似文献   

16.
17.
This article investigates the effect of moisture on the dynamic mechanical behavior of polyamide-6 (PA6)/clay nanocomposites with dynamic mechanical analysis from −130 to 110 °C. The storage moduli increase with the clay loading for dried and moisture-absorbed samples because of the enhancing effect from the high-aspect-ratio nanoclay. Storage moduli for moisture-exposed samples are lower than those for dried samples; the longer the moisture absorption period is, the lower the moduli are for neat PA6 and PA6/clay nanocomposites. At temperatures below about 10 °C, however, samples exposed to moisture for longer periods tend to be stiffer than dried samples, probably because of the stiffening effect of ice. The peak temperature of the β relaxation shifts from −53 to −65 °C as the moisture content increases. The glass-transition temperature (Tg) or α relaxation dramatically shifts; its position is significantly lowered from 62 to 17 °C as the moisture content increases (longer moisture absorption period) and from 62 to 50 °C as the clay loading increases. The observed depression of the storage modulus and Tg may be attributed to the plasticization effect of moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1823–1830, 2004  相似文献   

18.
The electrification of solid porous adsorbents of the clay type was studied. It was found by the thermally stimulated relaxation method that clays contained centers of the accumulation of surface and volume charges. Adsorbent structural changes were studied by X-ray diffraction. Original Russian Text ? A.M. Gashimov, M.A. Gasanov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 7, pp. 1352–1355.  相似文献   

19.
Three polystyrene (PS)/clay hybrid systems have been prepared via in situ polymerization of styrene in the presence of unmodified sodium montmorillonite (Na‐MMT) clay, MMT modified with zwitterionic cationic surfactant octadecyldimethyl betaine (C18DMB) and MMT modified with polymerizable cationic surfactant vinylbenzyldimethyldodecylammonium chloride (VDAC). X‐ray diffraction and TEM were used to probe mineral layer organization and to expose the morphology of these systems. The PS/Na‐MMT composite was found to exhibit a conventional composite structure consisting of unintercalated micro and nanoclay particles homogeneously dispersed in the PS matrix. The PS/C18DMB‐MMT system exhibited an intercalated layered silicate nanocomposite structure consisting of intercalated tactoids dispersed in the PS matrix. Finally, the PS/VDAC‐MMT system exhibited features of both intercalated and exfoliated nanocomposites. Systematic statistical analysis of aggregate orientation, characteristic width, length, aspect ratio, and number of layers using multiple TEM micrographs enabled the development of representative morphological models for each of the nanocomposite structures. Oxygen barrier properties of all three PS/clay hybrid systems were measured as a function of mineral composition and analyzed in terms of traditional Nielsen and Cussler approaches. A modification of the Nielsen model has been proposed, which considers the effect of layer aggregation (layer stacking) on gas barrier. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1733–1753, 2007  相似文献   

20.
The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007 cm(-1) using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130 cm(-1) which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v(4)=2<--1) and one to the second torsional hot band (v(4)=3<--2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands nu(9) and nu(9)+nu(4)-nu(4) was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83) cm(-1), 2.255(65) cm(-1), and 43208(28) MHz, respectively. Comparison of simulated and the experimental spectra yielded (mu||-mu(perpendicular))/mu(perpendicular)= -4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号