首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(peroxo)vanadium(V) complexes are widely investigated as anticancer agents. They exert their antitumor and cyctotoxic effects through inhibition of tyrosine phosphatases and DNA cleavage, respectively. The latter process remains poorly understood. The mechanism of DNA cleavage by NH(4)[(phen)V(O)(eta(2)-O(2))(2)] (phen = 1,10-phenanthroline) was investigated. Kinetic studies on DNA cleavage revealed that the complex is a single-strand nicking agent with no specificity. EPR experiments using 2,2,6,6-tetramethyl-4-piperidone (TMP) and 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) as spin-traps for singlet oxygen and hydroxyl radical, respectively, implicated hydroxyl radical production upon photodecomposition of bis(peroxo)vanadium(V). This was corroborated by benzoate inhibition of DNA strand scission and stoichiometric oxidation of 2-propanol to acetone upon irradiation of bis(peroxo)vanadium(V) phenanthroline. High-resolution polyacrylamide gel analysis of the vanadium cleavage reaction and [Fe(II)EDTA](2)(-)/H(2)O(2) resulted in comigration of "ladder" pattern bands, which superimposed when both reactions were run on the same lane. These findings identify hydroxyl radical produced from the photooxidation of the peroxo ligand on vanadium as the active species in DNA cleavage.  相似文献   

2.
The interaction of aqua (N-salicylideneglycinato)copper(II) (Cu(salgly)2+) complex with calf thymus DNA has been investigated by cyclic voltammetry. Potential-modulated DNA cleavage in the presence of Cu(salgly)2+ complex was performed at a gold electrode in a thin layer cell. DNA can be efficiently cleaved by electrochemically reducing Cu(salgly)2+ complex to Cu(salgly)+ complex at -0.7 V (vs. Ag/AgCl). When the solution was aerated with a small flow of O2 during electrolysis, the extent of DNA cleavage was dramatically enhanced, and hydroxyl radical scavengers inhibited DNA cleavage. These results suggested that O2 and hydroxyl radical were involved in potential-modulated DNA cleavage reaction. The percentage of DNA cleavage was enhanced as the working potential was shifted to more negative values and the electrolysis time was increased. It was also dependent on the ratio of Cu(salgly)2+ complex to DNA concentration. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results indicated that the method for potential-modulated DNA cleavage by Cu(salgly)2+ complex was simple and efficient.  相似文献   

3.
Two novel cyclen copper(II) complexes bridged by ferrocene were designed and synthesized. Both of these complexes exhibited excellent cleavage ability towards plasmid DNA via an oxidative pathway without the presence of any additives. Cyclic voltammetry was used to investigate the electrochemistry characters of the interaction between the complexes and DNA. Agarose gel electrophoresis was carried out to study the DNA restriction ability of these complexes, and the results indicated that the complexes showed higher cleavage efficiency via an oxidative pathway without the presence of any additives. The mechanism of DNA cleavage catalyzed by these complexes was examined by the addition of various scavengers, and the results showed that singlet oxygen and hydroxyl radical might be responsible for the cleavage process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Quercetin manganese(II) complexes were investigated focusing on its DNA hydrolytic activity. The complexes successfully promote the cleavage of plasmid DNA, producing single and double DNA strand breaks. The amount of conversion of supercoiled form (SC) of plasmid DNA to the nicked circular form (NC) depends on the concentration of the complex as well as the duration of incubation of the complexes with DNA. The maximum rate of conversion of the supercoiled form to the nicked circular form at pH 7.2 in the presence of 100 μM of the complexes is found to be 1.32 × 10−4 s−1. The hydrolytic cleavage of DNA by the complexes was supported by the evidence from free radical quenching, thiobarbituric acid-reactive substances (TBARS) assay and T4 ligase ligation.  相似文献   

5.
Ren R  Yang P  Zheng W  Hua Z 《Inorganic chemistry》2000,39(24):5454-5463
Copper(II)-L-histidine complexes effectively promote the cleavage of plasmid DNA and dideoxynucleotide dApdA at physiological pH and temperature. Studies of the mechanism of plasmid DNA cleavage by added radical scavengers, using rigorously anaerobic experiments, analyses for malondialdehyde-like products, religation assays, and HPLC analyses, indicate that DNA cleavage mediated by Cu(L-His) occurs via a hydrolytic path. The hydrolytic cleavage rate constants at 37 degrees C are estimated to be 0.76 h-1 for the decrease of form I and 0.25 h-1 for the increase of form III. The phosphoimager picture reveals that Cu(L-His) cleaves DNA with a certain sequence specificity (preferentially at 5'-GT-3'). The dinucleotide hydrolysis shows, with [Cu(L-His)] = 0.8 mM, rate enhancement factors of > 10(8). Interestingly, histidine-metal ion interactions (with Cu(II), Ni(II), Zn(II), etc.) have been used for various applications, e.g., protein purification, cross-linking, and targeting proteins to lipid bilayers. Our findings may provide the basis for developing new applications and new ways to design more effective and useful catalysts for DNA cleavage. Cu(L-His) is one of only a few well-defined metal complexes demonstrated to hydrolytically cleave dideoxynucleotides and DNA.  相似文献   

6.
Use of the hydroxyl radical and gel electrophoresis to study DNA structure   总被引:2,自引:0,他引:2  
The hydroxyl radical has been used as a chemical probe to study in solution the structure of DNA and DNA-protein complexes. The hydroxyl radical abstracts a deoxyribose hydrogen atom, cleaving one strand of the DNA. The cutting pattern, visualized by separating the cleavage products using gel electrophoresis, shows the reactivity of each backbone position toward the radical. This method has been applied to studies of DNA bending and helical twist. Phased runs of adenines (adenine tracts) cause sequence-directed DNA bending. The hydroxyl radical cleavage of a bent DNA fragment containing short adenine tracts phased with the helix screw gives rise to an unusual cutting pattern. The hydroxyl radical cleavage rate decreases in the 5' to 3' direction along each adenine tract, with a minimum at the 3' end of each adenine tract. The cleavage of the matching thymine tract is similar, but the minimum in the pattern is offset in the 3' direction. This pattern on the autoradiograph of the gel is interpreted to indicate that bending is accompanied by a narrow minor groove in the DNA molecule. Furthermore, hydroxyl radical cleavage results in different cutting patterns for two similar sequences, (CGA4T4)5 and (CGT4A4)5, which have been shown to be bent and relatively straight, respectively. The hydroxyl radical method has also been used to determine the helical repeat of the metallothionein IIA gene to be about 10.5 base pairs per turn. Methods of optimizing the hydroxyl radical reaction for DNA-protein footprinting are discussed. Because individual gel bands give information about cutting frequency at particular positions in the backbone, gel resolution and clear autoradiographs are important to this work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tu C  Shao Y  Gan N  Xu Q  Guo Z 《Inorganic chemistry》2004,43(15):4761-4766
A novel trinuclear copper(II) complex, Cu3-L (L = N,N,N',N',N' ',N' '-hexakis(2-pyridyl)-1,3,5-tris(aminomethyl)benzene), exhibited efficient oxidative strand scission of plasmid DNA. The solution behavior of the complex has been studied by potentiometric titration, UV spectroscopy, and cyclic voltammetry. The data showed that there are three redox-active copper ions in the complex with three types of bound water. The complex demonstrated a moderate binding ability for DNA. Cu3-L readily cleaves plasmid DNA in the presence of ascorbate to give nicked (form II) and then linear (form III) products, while the cleavage efficiency using H2O2 is less than by ascorbate, suggesting that the cleavage mode of the trinuclear complex is somewhat different from the traditional Fenton-like catalysis. Meanwhile, Cu3-L is far more efficient than its mononuclear analogue Cu-DPA (DPA = 2,2'-dipyridylamine) at the same [Cu2+] concentration, which suggests a possible synergy between the three or at least two Cu(II) centers in Cu3-L that contributes to its relatively high nucleolytic efficiency. Furthermore, the presence of standard radical scavengers does not have clear effect on the cleavage efficiency, suggesting the reactive intermediates leading to DNA cleavage are not freely diffusible radicals.  相似文献   

8.
A new method has been developed for the label-free, convenient, and real-time monitoring of the cleavage of single-stranded DNA by single-strand-specific S1 nuclease and hydroxyl radical based on cationic water-soluble poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride](PMNT). The PMNT can form an interpolyelectrolyte complex with ssDNA (duplex) through electrostatic interactions, in which PMNT takes a highly conjugated and planar conformation, and thus PMNT exhibits a relatively red-shifted absorption wavelength. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radical into small fragments, the PMNT/ssDNA duplex cannot form. In this case, the PMNT remains in random-coil conformation and exhibits a relatively short absorption wavelength. The nuclease digestion or oxidative damage by hydroxyl radical of DNA can be monitored by absorption spectra or just visualized by the "naked-eye" in view of the observed PMNT color changes in aqueous solutions. This assay is simple and rapid, and there is no need to label DNA substrates. The most important characteristic of the assay is direct visualization of the DNA cleavage by the "naked-eye", which makes it more convenient than other methods that rely on instrumentation. The assay also provides a promising application in drug screening based on the inhibition of oxidative damage of DNA.  相似文献   

9.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(bpy)2(dpta)]3+ and [Co(bpy)2(amtp)]3+ (bpy = 2,2′-bipyridine, dpta = dipyrido-[3,2-a;2′,3′-c]-thien-[3,4-c]azine, amtp = 3-amino-1,2,4-triazino[5,6-f]-1,10-phenanthroline) have been synthesized and characterized. The interaction of CoIII complexes with calf thymus DNA was investigated by spectroscopic and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, CoIII complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that hydroxyl radical (OH) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(bpy)2(dpta)]3+ and superoxide anion radical (O 2 •− ) acts as the key role in the cleavage reaction of plasmid DNA by [Co(bpy)2(amtp)]3+.  相似文献   

10.
To characterize fullerenes (C(60) and C(70)) as photosensitizers in biological systems, the generation of active oxygen species, through energy transfer (singlet oxygen (1)O(2)) and electron transfer (reduced active oxygen radicals such as superoxide anion radical O(2)(-)* and hydroxyl radical *OH), was studied by a combination of methods, including biochemical (DNA-cleavage assay in the presence of various scavengers of active oxygen species), physicochemical (EPR radical trapping and near-infrared spectrometry), and chemical methods (nitro blue tetrazolium (NBT) method). Whereas (1)O(2) was generated effectively by photoexcited C(60) in nonpolar solvents such as benzene and benzonitrile, we found that O(2)(-)* and *OH were produced instead of (1)O(2) in polar solvents such as water, especially in the presence of a physiological concentration of reductants including NADH. The above results, together with those of a DNA cleavage assay in the presence of various scavengers of specific active oxygen species, indicate that the active oxygen species primarily responsible for photoinduced DNA cleavage by C(60) under physiological conditions are reduced species such as O(2)(-)* and *OH.  相似文献   

11.
八面体钌(Ⅱ)多吡啶配合物与双螺旋DNA插入结合后具有较强的结合能力,并且含有一个具有氧化一还原活性的中心金属离子.它们对氧化剂相对比较稳定,但对光比较敏感,因此可利用光辐射使之产生单线态氧或羟基自由基等而使DNA裂解.此外,这些配合物具有左手∧-和右手△-两种构型,与同样具有手性的DNA作用时,存在着立体选择性结合.并且在对DNA的断裂反应中也存在一定的立体选择性,可作为不同构型DNA的结构探针.  相似文献   

12.
Abstract— Copper(II), in the presence of UV-B radiation(280–315 nm), can generate single-strand breaks in the sugar-phosphate backbone of pBR322 plasmid DNA. A low level of single-strand backbone breaks occurs in the presence of Cu(II) alone, but UV-B irradiation increases the rate by the more than 100-fold. Concomitant with the damage to the DNA backbone is a loss of transforming activity. Oxygen is required for generation of the single-strand breaks but not for the loss of transforming activity. A DNA glycosylase (Fpg), which participates in the repair of certain DNA nitrogenous base damage, does not repair plasmid DNA damaged by Cu(II). The hydroxyl radical scavenging compound DMSO is only somewhat effective at protecting the physical and biological properties of the DNA. These results with Cu(II) are compared to those obtained previously with pBR322 plasmid DNA in the presence of Fe(III) and UV-A.  相似文献   

13.
以紫外光谱、荧光光谱、粘度法和凝胶电泳方法研究了全反式维甲酸合钇(Ⅲ)配合物与DNA的作用。结果表明,该配合物能在生理条件下比配体和金属离子更有效地切割质粒DNA,体系离子强度和pH值的变化对配合物的切割活性有较大影响,自由基捕捉剂的加入不影响配合物的切割活性。该配合物对DNA的切割可能通过水解机理进行。该配合物可使DNA的粘度增加,使EB-DNA体系的荧光强度和DNA溶液的紫外吸收强度降低。据此推断,该配合物主要以嵌入方式与DNA作用。  相似文献   

14.
The relative efficiencies of photoinduced DNA cleavage by complexes of the type CpM(CO)(n)()R (M = Cr, Mo, or W, n = 3, R = CH(3) or Ph; M = Fe, n = 2, R = CH(3) or C(6)H(5)) have been investigated using a plasmid relaxation assay. Only the tungsten and iron complexes reproducibly caused single strand scission, in addition to which the iron systems efficiently gave double strand cleavage. The iron complexes gave strand scission at lower concentrations than the corresponding tungsten systems, with the phenyl complexes producing more damage than the methyl systems.  相似文献   

15.
Mixed ligand complexes having the formulae Cu(RPO)2Py2, Cu(RPO)2Im2 and Cu(DBO)2Py2 [RPO = resacetophenone oxime, DBO = 2,4-dihydroxybenzophenone oxime, Py = pyridine and Im = imidazole] have been synthesized and characterized by UV–Vis, IR, ESR, cyclic voltammetry and magnetic susceptibility methods. Absorption studies revealed that each of these octahedral complexes is an avid binder of calf thymus DNA. The apparent binding constants for mixed ligand complexes are in order of 104–105 M−1. Based on the data obtained in the DNA binding studies a partial intercalative mode of binding is suggested for these complexes. The nucleolytic cleavage activity of the adducts was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of oxidant (H2O2). All the metal complexes cleaved supercoiled DNA by hydrolytic and oxidative paths. The oxidative path dominates the hydrolytic cleavage. The hydrolytic cleavage of DNA is evidenced from the control experiments showing discernable cleavage inhibition in the presence of the hydroxyl radical inhibitor DMSO or the singlet oxygen quencher azide ion.  相似文献   

16.
A library of complexes that included iron, cobalt, nickel, and copper chelates of cyclam, cyclen, DOTA, DTPA, EDTA, tripeptide GGH, tetrapeptide KGHK, NTA, and TACN was evaluated for DNA nuclease activity, ascorbate consumption, superoxide and hydroxyl radical generation, and reduction potential under physiologically relevant conditions. Plasmid DNA cleavage rates demonstrated by combinations of each complex and biological co-reactants were quantified by gel electrophoresis, yielding second-order rate constants for DNA(supercoiled) to DNA(nicked) conversion up to 2.5 × 10(6) M(-1) min(-1), and for DNA(nicked) to DNA(linear) up to 7 × 10(5) M(-1) min(-1). Relative rates of radical generation and characterization of radical species were determined by reaction with the fluorescent radical probes TEMPO-9-AC and rhodamine B. Ascorbate turnover rate constants ranging from 3 × 10(-4) to 0.13 min(-1) were determined, although many complexes demonstrated no measurable activity. Inhibition and Freifelder-Trumbo analysis of DNA cleavage supported concerted cleavage of dsDNA by a metal-associated reactive oxygen species (ROS) in the case of Cu(2+)(aq), Cu-KGHK, Co-KGHK, and Cu-NTA and stepwise cleavage for Fe(2+)(aq), Cu-cyclam, Cu-cyclen, Co-cyclen, Cu-EDTA, Ni-EDTA, Co-EDTA, Cu-GGH, and Co-NTA. Reduction potentials varied over the range from -362 to +1111 mV versus NHE, and complexes demonstrated optimal catalytic activity in the range of the physiological redox co-reactants ascorbate and peroxide (-66 to +380 mV).  相似文献   

17.
Summary By use of a [32P] end-labelled 163 base pair linear fragment of duplex DNA isolated from tyrTDNA, the apparent sequence selectivity previously reported for DNA cleavage by CuII:thiol systems was shown to be identical to the sequence selectivity in scission shown by the CuII:ascorbate system. On this basis, a general mechanism of DNA cleavage is proposed for CuII with reducing agents including thiols as well as reducing sugars, including ascorbate and glucosamine. This mechanism involves hydroxyl radical generation and leads to both base damage and strand scission, and based on results with CuII:thiol cleavage the former occurs before the latter is detectable. Cleavage of DNA by CuII:hydrogen peroxide follows a different chemical mechanism, distinguishable by its different sequence preference.  相似文献   

18.
Two transition metal complexes, [Cu(FH)3]⋅2Cl⋅2H2O and [Ni(FH)3]⋅2Cl⋅2H2O, were synthesized from the reactions of furan‐2‐carboxylic acid hydrazide with CuCl2⋅2H2O and NiCl2⋅6H2O. The synthesized complexes were characterized using analytical and various spectral techniques. The structures of the complexes were determined using single‐crystal X‐ray diffraction. The interactions of the complexes with calf thymus DNA (CT‐DNA) were studied using absorption, fluorescence, cyclic voltammetric and viscosity measurements. The experimental results showed that the complexes could interact with CT‐DNA through intercalation. A gel electrophoresis assay demonstrated the ability of the complexes to cleave pBR322 DNA. The binding interaction of the complexes with bovine serum albumin was investigated using a fluorescence spectroscopic method. The radical scavenging ability, assessed using a series of antioxidant assays involving 2,2‐diphenyl‐2‐picrylhydrazyl radical, hydroxyl radical and nitric oxide radical, showed that the complexes possess significant radical scavenging properties. Further, the in vitro cytotoxic effect of the complexes examined on cancerous cell lines, such as human cervical cancer cells (HeLa) and human breast cancer cell line (MCF‐7), showed that the complexes exhibit significant anticancer activity.  相似文献   

19.
Ruthenium(II) complexes with 2-acetylpyridine-thiosemicarbazones (L1–L4) were synthesized and characterized by analytical and spectral (FT-IR, UV–vis, NMR [1H, 13C and 31P], and ESI-Mass) methods. Systematic biological investigations, free radical scavenging, anticancer activities, and DNA cleavage studies, were carried out for the complexes. Antioxidant studies showed that the complexes have significant antioxidant activity against DPPH, hydroxyl, nitric oxide radicals and hydrogen peroxide assay. The in vitro cytotoxicity of complexes against breast cancer (MCF-7) cell line was assayed showing high cytotoxicity with low IC50 values indicating their efficiency in destroying the cancer cells even at very low concentrations. The DNA cleavage studies showed that the complexes efficiently cleaved DNA.  相似文献   

20.
The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号