首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two different concepts of gradient current power supplies are introduced, which are suitable for the generation of ultra-high intensity pulsed magnetic field gradients of alternating polarity. The first system consists of a directly binary coded current source (DBCCS). It yields current pulses of up to ±120 A and a maximum voltage across the gradient coil of ±400 V. The second system consists of two TECHRON 8606 power supplies in push–pull configuration (PSPPC). It yields current pulses of up to ±100 A and a maximum voltage across the gradient coil of ±300 V. In combination with actively shielded anti-Helmholtz gradient coils, both systems are used routinely in NMR diffusion studies with unipolar pulsed field gradients of up to 35 T/m. Until now, alternating pulsed field gradient experiments were successfully performed with gradient intensities of up to ±25 T/m (DBCCS) and ±35 T/m (PSPPC), respectively. Based on the observation of the NMR spin echo in the presence of a small read gradient, procedures to test the stability and the matching of such ultra-high pulsed field gradient intensities as well as an automated routine for the compensation of possible mismatches are introduced. The results of these procedures are reported for the PSPPC system.  相似文献   

2.
In this paper, we report our initial results on studying magnetically aligned phospholipid bilayers (bicelles) at high magnetic fields (approximately 3.4 T) with electron paramagnetic resonance (EPR) spectroscopy at 95 GHz (W-band). In order to characterize this system for W-band EPR studies, we have utilized the nitroxide spin probe 3beta-doxyl-5alpha-cholestane to demonstrate the effects of macroscopic bilayer alignment. At W-band due to the increase in magnetic field strength (when compared to X-band studies at 9.5 GHz) (S. M. Garber et al., J. Am. Chem. Soc. 121, 3240-3241 (1999)), we were able to examine magnetically aligned phospholipid bilayers at two orientations with the bilayer normal oriented either perpendicular or parallel (upon addition of YbCl3) with respect to the direction of the static magnetic field. Additionally, at a magnetic field of 3.4 T (g=2 resonance at W-band), we were able to study the parallel alignment with a lower concentration of Yb3+, thereby eliminating the possible unwanted effects associated with lanthanide-protein interactions and paramagnetic shifts and/or line broadening induced by the lanthanide ions. The development of this new spin label alignment technique will open up a whole new area of investigation for phospholipid bilayer systems and membrane protein EPR studies at high magnetic fields.  相似文献   

3.
Numerical simulation has become an indispensable tool for the interpretation of pulse EPR experiments. In this work it is shown how automatic orientation selection, grouping of operator factors, and direct selection and elimination of coherences can be used to improve the efficiency of time-domain simulations of one- and two-dimensional electron spin echo envelope modulation (ESEEM) spectra. The program allows for the computation of magnetic interactions of any symmetry and can be used to simulate spin systems with an arbitrary number of nuclei with any spin quantum number. Experimental restrictions due to finite microwave pulse lengths are addressed and the enhancement of forbidden coherences by microwave pulse matching is illustrated. A comparison of simulated and experimental HYSCORE (hyperfine sublevel correlation) spectra of ordered and disordered systems with varying complexity shows good qualitative agreement.  相似文献   

4.
The interaction of xenon with different proteins in aqueous solution is investigated by 129Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia “Frontiers of NMR in Molecular Biology VI”, Jan. 9–15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 “Optical Polarization and Xenon NMR of Materials”, June 28–30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

5.
A new probe design is presented for obtaining homonuclear, heteronuclear, and inverse detected NMR spectra from more than one sample in the same total data acquisition time as for a single sample, thus increasing data acquisition efficiency. Specifically, a two-coil system, with each solenoidal coil impedance matched to 50 Omega at both proton and nitrogen frequencies, has been designed for operation at 11.7 T with an observe volume of 15 microL for each coil. Isolation between the two frequencies for each individual coil, and at each frequency between coils, was greater than 30 dB. Two-dimensional COSY and HMQC spectra were obtained with negligible NMR cross-talk between the two coils.  相似文献   

6.
While most proton (1H) spectra acquired in vivo utilize selective suppression of the solvent signal for more sensitive detection of signals from the dilute metabolites, recent reports have demonstrated the feasibility and advantages of collecting in vivo data without solvent attenuation. When these acquisitions are performed at short echo times, the presence of frequency modulations of the water resonance may become an obstacle to the identification and quantitation of metabolite resonances. The present report addresses the characteristics, origin, and elimination of these sidebands. Sideband amplitudes were measured as a function of delay time between gradient pulse and data collection, as a function of gradient pulse amplitude, and as a function of spatial location of the sample for each of the three orthogonal gradient sets. Acoustic acquisitions were performed to demonstrate the correlation between mechanical vibration resonances and the frequencies of MR sidebands. A mathematical framework is developed and compared with the experimental results. This derivation is based on the theory that these frequency modulations are induced by magnetic field fluctuations generated by the transient oscillations of gradient coils.  相似文献   

7.
The transient thiophosphenous fluoride FPS was produced by pyrolysis of 2.5% F2PSPF2 in Ar at 1300–1800°C. High-resolution (≥0.004 cm−1) Fourier transform infrared spectra of the a-type ν1 and b-type ν2 bands, centered respectively at 803.249 and 726.268 cm−1, were measured and fitted to rotational and quartic centrifugal distortion parameters. The millimeter-wave spectrum, essentially b-type, was measured between 300 and 370 GHz in the ground state and in the ν3 excited state for FP32S and in the ground state for FP34S. The frequencies were fitted to a Watson-type A-reduced Hamiltonian up to sextic distortion terms. High level ab initio calculations with large basis sets were performed on FPS and supported the first identification of its infrared and millimeter wave spectra. The calculated anharmonic force field provided precise ab initio rovibrational α constants which were combined with the experimental molecular parameters to determine an accurate equilibrium structure of the molecule: re(PS)=188.86 pm, re(PF)=158.70 pm, θ(FPS)=109.28°. The collision-controlled 1/e lifetime measured in a 10-Pa (1 : 20) F2PSPF2/Ar mixture was 2 s, more than two orders of magnitude larger than that of FPO under the same experimental conditions.  相似文献   

8.
In the past few years, solid-state 1H NMR spectroscopy under fast magic-angle spinning (MAS) has developed into a versatile tool for elucidating structure and dynamics. Dipolar multiple-quantum (MQ), in particular double-quantum (DQ), MAS spectroscopy has been applied to a variety of materials and provided unique insight, e.g., into the structure of hydrogen-bonded systems. This review intends to present solid-state 1H DQ and MQ MAS spectroscopy in a systematic fashion with a particular emphasis on methodological aspects, followed by an overview of applications.  相似文献   

9.
The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.  相似文献   

10.
We have implemented a scheme, SPECMON, for monitoring various parameters of a spectrometer, such as nitrogen pressure and sample temperature, and taking corrective action. The scheme is based on considerations of protection management which are of general application. Evaluation of the spectrometer state is incorporated in macros of the application software (VNMR) and is therefore very flexible. In contrast, corrective action is limited to the single one which is deemed fully safe: complete shutdown of the spectrometer and logging. Shutdown is implemented by a minor hardware modification of the spectrometer: the introduction of a second input to a relay already present for protection of the spectrometer power supply. Monitoring is handled by the host computer, and the shutdown command is transmitted via control lines of its series port, independent of the standard connection between the host computer and the NMR system console. The monitoring system (software and hardware) is unobtrusive in normal conditions, and it can be tested without affecting the operation of the spectrometer.  相似文献   

11.
A pulsed electron double resonance (PELDOR) setup working at S-band frequencies is introduced and its performance compared with an X-band setup. Furthermore, to verify experimentally that it is possible to disentangle the dipolar coupling nu(Dip) from the exchange coupling J by PELDOR we synthesized and investigated four bisnitroxide radicals. They exhibit in pairs the same distances r(AB) between the nitroxide moieties but only one of each pair possesses a non-zero J. The experimental values for r(AB) match the ones from molecular modeling very well for the molecules without exchange coupling. For one bisnitroxide it was possible to separate nu(Dip) from J and to ascertain the magnitude and sign of J to +11 MHz (antiferromagnetic spin-spin coupling).  相似文献   

12.
We propose a new model and a solution method for two-phase compressible flows. The model involves six equations obtained from conservation principles applied to each phase, completed by a seventh equation for the evolution of the volume fraction. This equation is necessary to close the overall system. The model is valid for fluid mixtures, as well as for pure fluids. The system of partial differential equations is hyperbolic. Hyperbolicity is obtained because each phase is considered to be compressible. Two difficulties arise for the solution: one of the equations is written in non-conservative form; non-conservative terms exist in the momentum and energy equations. We propose robust and accurate discretisation of these terms. The method solves the same system at each mesh point with the same algorithm. It allows the simulation of interface problems between pure fluids as well as multiphase mixtures. Several test cases where fluids have compressible behavior are shown as well as some other test problems where one of the phases is incompressible. The method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.  相似文献   

13.
We present a new general-purpose advection scheme for unstructured meshes based on the use of a variation of the interface-tracking flux formulation recently put forward by O. Ubbink and R. I. Issa (J. Comput. Phys.153, 26 (1999)), in combination with an extended version of the flux-limited advection scheme of J. Thuburn (J. Comput. Phys.123, 74 (1996)), for continuous fields. Thus, along with a high-order mode for continuous fields, the new scheme presented here includes optional integrated interface-tracking modes for discontinuous fields. In all modes, the method is conservative, monotonic, and compatible. It is also highly shape preserving. The scheme works on unstructured meshes composed of any kind of connectivity element, including triangular and quadrilateral elements in two dimensions and tetrahedral and hexahedral elements in three dimensions. The scheme is finite-volume based and is applicable to control-volume finite-element and edge-based node-centered computations. An explicit–implicit extension to the continuous-field scheme is provided only to allow for computations in which the local Courant number exceeds unity. The transition from the explicit mode to the implicit mode is performed locally and in a continuous fashion, providing a smooth hybrid explicit–implicit calculation. Results for a variety of test problems utilizing the continuous and discontinuous advection schemes are presented.  相似文献   

14.
In this paper, we present a new type of semi-Lagrangian scheme for advection transportation equation. The interpolation function is based on a cubic polynomial and is constructed under the constraints of conservation of cell-integrated average and the slope modification. The cell-integrated average is defined via the spatial integration of the interpolation function over a single grid cell and is advanced using a flux form. Nonoscillatory interpolation is constructed by choosing proper approximation to the cell-center values of the first derivative of the interpolation function, which appears to be a free parameter in the present formulation. The resulting scheme is exactly conservative regarding the cell average of the advected quantity and does not produce any spurious oscillation. Oscillationless solutions to linear transportation problems were obtained. Incorporated with an entropy-enforcing numerical flux, the presented schemes can accurately compute shocks and sonic rarefaction waves when applied to nonlinear problems.  相似文献   

15.
New NMR broadband inversion pulses that compensate both for resonance offset and radiofrequency (RF) inhomogeneity are described. The approach described is a straightforward computer optimization of an initial digitized waveform generated from either a constant-amplitude frequency sweep or from an existing composite inversion pulse. Problems with convergence to local minima are alleviated by the way the optimization is carried out. For a given duration and maximum allowable RF field strength B1 (but not necessarily given RMS power deposition), the resultant broadband inversion pulse (BIP) shows superior inversion compared to inversion pulses obtained from previous methods, including adiabatic inversion pulses. Any existing BIP can be systematically elaborated to build up longer inversion pulses that perform over larger and larger bandwidths. The resulting pulse need not be adiabatic throughout its duration or across the entire operational bandwidth.  相似文献   

16.
A subspace time-domain algorithm for automated NMR spectral normalization   总被引:2,自引:0,他引:2  
Recently, two methods have been proposed for quantitatively comparing NMR spectra of control and treated samples, in order to examine the possible occurring variations in cell metabolism and/or structure in response to numerous physical, chemical, and biological agents. These methods are the maximum superposition normalization algorithm (MaSNAl) and the minimum rank normalization algorithm (MiRaNAl). In this paper a new subspace-based time-domain normalization algorithm, denoted by SuTdNAl (subspace time-domain normalization algorithm), is presented. By the determination of the intersection of the column spaces of two Hankel matrices, the common signal poles and further on the components having proportionally varying amplitudes are detected. The method has the advantage that it is computationally less intensive than the MaSNAl and the MiRaNAl. Furthermore, no approximate estimate of the normalization factor is required. The algorithm was tested by Monte Carlo simulations on a set of simulation signals. It was shown that the SuTdNAl has a statistical performance similar to that of the MiRaNAl, which itself is an improvement over the MaSNAl. Furthermore, two samples of known contents are compared with the MiRaNAl, the SuTdNAl, and an older method using a standard. Finally, the SuTdNAl is tested on a realistic simulation example derived from an in vitro measurement on cells.  相似文献   

17.
This paper is devoted to the derivation of an efficient numerical scheme for the Kerr–Maxwell system. We begin by studying the 1-D Riemann problem. We obtain a result of existence and uniqueness for large data. Then we develop a high-order Roe solver and exhibit solutions in 1-D and 2-D simulations.  相似文献   

18.
Edge-element methods have proved very effective for 3-D electromagnetic computations and are widely used on unstructured meshes. However, the accuracy of standard edge elements can be criticised because of their low order. This paper analyses discrete dispersion relations together with numerical propagation accuracy to determine the effect of tetrahedral shape on the phase accuracy of standard 3-D edge-element approximations in comparison to other methods. Scattering computations for the sphere obtained with edge elements are compared with results obtained with vertex elements, and a new formulation of the far-field integral approximations for use with edge elements is shown to give improved cross sections over conventional formulations.  相似文献   

19.
Free induction decay (FID) signals in solid state NMR measurements performed with magic angle spinning can often be extended in time by factors on the order of 10 by a simple pulsed spin locking technique. The sensitivity of a structural measurement in which the structural information is contained in the dependence of the integrated FID amplitude on a preceding evolution period can therefore be enhanced substantially by pulsed spin locking in the signal detection period. We demonstrate sensitivity enhancements in a variety of solid state NMR techniques that are applicable to selectively isotopically labeled samples, including 13C-15N rotational echo double resonance (REDOR), 13C-13C dipolar recoupling measurements using the constant-time finite-pulse radio-frequency-driven recoupling (fpRFDR-CT) and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) techniques, and torsion angle measurements using the double quantum chemical shift anisotropy (DQCSA) technique. Further, we demonstrate that the structural information in the solid state NMR data is not distorted by pulsed spin locking in the detection period.  相似文献   

20.
Recovery of the magnetic dipolar interaction between nuclei bearing the same gyromagnetic ratio in rotating solids can be promoted by synchronous rf irradiation. Determination of the dipolar interaction strength can serve as a tool for structural elucidation in polycrystalline powders. Spinning frequency dependent narrow-band (nb) RFDR and SEDRA experiments are utilized as simple techniques for the determination of dipolar interactions between the nuclei in coupled homonuclear spin pairs. The magnetization exchange and coherence dephasing due to a fixed number of rotor-synchronously applied pi-pulses is monitored at spinning frequencies in the vicinity of the rotational resonance (R(2)) conditions. The powder nbRFDR and nbSEDRA decay curves of spin magnetizations and coherences, respectively, as a function of the spinning frequency can be measured and analyzed using simple rate equations providing a quantitative measure of the dipolar coupling. The effects of the phenomenological relaxation parameters in these rate equations are discussed and an improved methodology is suggested for analyzing nbRFDR data for small dipolar couplings. The distance between the labeled nuclei in the 1,3-(13)C(2)-hydroxybutyric acid molecule is rederived using existing nbRFDR results and the new simulation procedure. A nbSEDRA experiment has been performed successfully on a powder sample of singly labeled 1-(13)C-L-leucine measuring the dipolar interaction between the labeled carboxyl carbon and the natural abundant beta-carbon. Both narrowband techniques are employed for the determination of the nuclear distances between the side-chain carbons of leucine and its carbonyl carbon in a tripeptide Leu-Gly-Phe that is singly (13)C-labeled at the leucine carbonyl carbon position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号