首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A pulsed electron double resonance (PELDOR) setup working at S-band frequencies is introduced and its performance compared with an X-band setup. Furthermore, to verify experimentally that it is possible to disentangle the dipolar coupling nu(Dip) from the exchange coupling J by PELDOR we synthesized and investigated four bisnitroxide radicals. They exhibit in pairs the same distances r(AB) between the nitroxide moieties but only one of each pair possesses a non-zero J. The experimental values for r(AB) match the ones from molecular modeling very well for the molecules without exchange coupling. For one bisnitroxide it was possible to separate nu(Dip) from J and to ascertain the magnitude and sign of J to +11 MHz (antiferromagnetic spin-spin coupling).  相似文献   

2.
Two different concepts of gradient current power supplies are introduced, which are suitable for the generation of ultra-high intensity pulsed magnetic field gradients of alternating polarity. The first system consists of a directly binary coded current source (DBCCS). It yields current pulses of up to ±120 A and a maximum voltage across the gradient coil of ±400 V. The second system consists of two TECHRON 8606 power supplies in push–pull configuration (PSPPC). It yields current pulses of up to ±100 A and a maximum voltage across the gradient coil of ±300 V. In combination with actively shielded anti-Helmholtz gradient coils, both systems are used routinely in NMR diffusion studies with unipolar pulsed field gradients of up to 35 T/m. Until now, alternating pulsed field gradient experiments were successfully performed with gradient intensities of up to ±25 T/m (DBCCS) and ±35 T/m (PSPPC), respectively. Based on the observation of the NMR spin echo in the presence of a small read gradient, procedures to test the stability and the matching of such ultra-high pulsed field gradient intensities as well as an automated routine for the compensation of possible mismatches are introduced. The results of these procedures are reported for the PSPPC system.  相似文献   

3.
The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.  相似文献   

4.
Free induction decay (FID) signals in solid state NMR measurements performed with magic angle spinning can often be extended in time by factors on the order of 10 by a simple pulsed spin locking technique. The sensitivity of a structural measurement in which the structural information is contained in the dependence of the integrated FID amplitude on a preceding evolution period can therefore be enhanced substantially by pulsed spin locking in the signal detection period. We demonstrate sensitivity enhancements in a variety of solid state NMR techniques that are applicable to selectively isotopically labeled samples, including 13C-15N rotational echo double resonance (REDOR), 13C-13C dipolar recoupling measurements using the constant-time finite-pulse radio-frequency-driven recoupling (fpRFDR-CT) and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) techniques, and torsion angle measurements using the double quantum chemical shift anisotropy (DQCSA) technique. Further, we demonstrate that the structural information in the solid state NMR data is not distorted by pulsed spin locking in the detection period.  相似文献   

5.
A two-dimensional (2D) double-quantum (DQ) experiment under rotational resonance (R(2)) conditions is introduced for evaluating dipolar couplings in rotating solids. The contributions from the R(2)-recoupled dipolar interaction and the J coupling can be conveniently separated in the resulting 2D R(2)-DQ spectrum, so that the unknown dipolar coupling can readily be extracted, provided that the values of the involved J coupling constants are known. Since the measured parameters are integral intensity ratios between suitably chosen absorption peaks in the 2D spectrum, the proposed method is characterized by a reduced sensitivity to relaxation parameters. The effect of rotor-modulated terms, including chemical shift anisotropy, is efficiently averaged out by synchronizing the excitation/reconversion time with the rotor period. All of these features are demonstrated theoretically by the example of two model systems, namely, isolated spin-pairs and a three-spin system. The results of the theoretical models are applied to both (13)C and (1)H nuclei to extract dipolar couplings in uniformly (13)C labeled L-alanine and a crosslinked natural rubber.  相似文献   

6.
Sample convection can severely attenuate the signals observed in pulsed field gradient spin--echo experiments such as those used for gradient shimming. A new class of pulse sequences is proposed, in which a double spin--echo refocuses the phase errors caused by sample convection, enabling gradient shimming to be performed reliably over a wide range of temperatures.  相似文献   

7.
An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton–Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, we employ a Jacobian–free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2×2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements.  相似文献   

8.
Ferro-refraction is the field magnification that is obtained when a current segment is near a high magnetic permeable boundary. It is shown that ferro-refraction may be used in the design of magnets for NMR or MRI to increase the efficiency of these magnets. The field may be modeled analytically with the Biot--Savart law and the inclusion of mirror image currents. Ferro-refraction is particularly useful in the design of monohedral magnets, magnets producing a remote homogeneous region which have the magnetic sources arranged to one side. These magnets have also been called planar magnets. Two designs for a monohedral magnet which produce good agreement between experimental and analytic results are presented.  相似文献   

9.
We have derived approximate analytic solutions to the master equation describing the evolution of the spin I=3/2 density operator in the presence of a radio-frequency (RF) field and both static and fluctuating quadrupolar interactions. Spectra resulting from Fourier transformation of the evolutions of the on-resonance spin-locked magnetization into the various coherences display two satellite pairs and, in some cases, a central line. The central line is generally trimodal, consisting of a narrow component related to a slowly relaxing mode and two broad components pertaining to two faster relaxing modes. The rates of the fast modes are sensitive to slow molecular motion. Neither the amplitude nor the width of the narrow component is affected by the magnitude of the static coupling, whereas the corresponding features of the broad components depend in a rather complicated manner on the spin-lock field strength and static quadrupolar interaction. Under certain experimental conditions, the dependencies of the amplitudes on the dynamics are seen to vanish and the relaxation rates reduce to relatively simple expressions. One of the promising emerging features is the fact that the evolutions into the selectively detected quadrupolar spin polarization order and the rank-two double-quantum coherence do not exhibit a slowly relaxing mode and are particularly sensitive to slow molecular motion. Furthermore, these coherences can only be excited in the presence of a static coupling and this makes it possible to discern nuclei in anisotropic from those in isotropic environment. The feasibility of the spin-lock pulse sequences with limited RF power and a nonvanishing average electric field gradient has been demonstrated through experiments on sodium in a dense lyotropic DNA liquid crystal.  相似文献   

10.
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.  相似文献   

11.
The isotropic chemical shift and the nuclear quadrupole coupling constant for (14)N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO(3), Al(NO(3))(3), Ba(NO(3))(2), Ca(NO(3))(2), CsNO(3), KNO(3), LiNO(3), Mg(NO(3))(2), NaNO(3), Pb(NO(3))(2), RbNO(3), Sr(NO(3))(2), Th(NO(3))(4)center dot4H(2)O, and UO(2)(NO(3))(2)center dot3H(2)O. Even though the spectra show broadening due to (14)N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH(4)Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO(3) to 993 kHz for LiNO(3). These data are compared with those available in the literature.  相似文献   

12.
A new grid adaptation strategy, which minimizes the truncation error of a pth-order finite difference approximation, is proposed. The main idea of the method is based on the observation that the global truncation error associated with discretization on nonuniform meshes can be minimized if the interior grid points are redistributed in an optimal sequence. The method does not explicitly require the truncation error estimate, and at the same time, it allows one to increase the design order of approximation globally by one, so that the same finite difference operator reveals superconvergence properties on the optimal grid. Another very important characteristic of the method is that if the differential operator and the metric coefficients are evaluated identically by some hybrid approximation, then the single optimal grid generator can be employed in the entire computational domain independently of points where the hybrid discretization switches from one approximation to another. Generalization of the present method to multiple dimensions is presented. Numerical calculations of several one-dimensional and one two-dimensional test examples demonstrate the performance of the method and corroborate the theoretical results.  相似文献   

13.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

14.
Recovery of the magnetic dipolar interaction between nuclei bearing the same gyromagnetic ratio in rotating solids can be promoted by synchronous rf irradiation. Determination of the dipolar interaction strength can serve as a tool for structural elucidation in polycrystalline powders. Spinning frequency dependent narrow-band (nb) RFDR and SEDRA experiments are utilized as simple techniques for the determination of dipolar interactions between the nuclei in coupled homonuclear spin pairs. The magnetization exchange and coherence dephasing due to a fixed number of rotor-synchronously applied pi-pulses is monitored at spinning frequencies in the vicinity of the rotational resonance (R(2)) conditions. The powder nbRFDR and nbSEDRA decay curves of spin magnetizations and coherences, respectively, as a function of the spinning frequency can be measured and analyzed using simple rate equations providing a quantitative measure of the dipolar coupling. The effects of the phenomenological relaxation parameters in these rate equations are discussed and an improved methodology is suggested for analyzing nbRFDR data for small dipolar couplings. The distance between the labeled nuclei in the 1,3-(13)C(2)-hydroxybutyric acid molecule is rederived using existing nbRFDR results and the new simulation procedure. A nbSEDRA experiment has been performed successfully on a powder sample of singly labeled 1-(13)C-L-leucine measuring the dipolar interaction between the labeled carboxyl carbon and the natural abundant beta-carbon. Both narrowband techniques are employed for the determination of the nuclear distances between the side-chain carbons of leucine and its carbonyl carbon in a tripeptide Leu-Gly-Phe that is singly (13)C-labeled at the leucine carbonyl carbon position.  相似文献   

15.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon–proton coupling constants in 13C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but 1JCH couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the 1H–1H and long-range 1H–13C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the “weak coupling” analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

16.
The accurate measurement of small spin–spin coupling constants in macromolecules dissolved in a liquid crystalline phase is important in the context of molecular structure investigation by modern liquid state NMR. A new spin-state-selection filter, DIPSAP, is presented with significantly reduced sensitivity to J-mismatch of the filter delays compared to previously proposed pulse sequences. DIPSAP presents an attractive new approach for the accurate measurement of small spin–spin coupling constants in molecules dissolved in anisotropic solution. Application to the measurement of 15N–13C′ and 1HN13C′ coupling constants in the peptide planes of 13C, 15N labeled proteins demonstrates the high accuracy obtained by a DIPSAP-based experiment.  相似文献   

17.
We present a new NMR experiment for estimating the type and degree of sugar-puckering in high-molecular-weight unlabeled DNA molecules. The experiment consists of a NOESY sequence preceded by a constant-time scalar coupling period. Two subexperiments are compared, each differing in the amount of time the (3)J(H3'H2') and (3)J(H3'H2") couplings are active on the H3' magnetization. The resultant data are easy to analyze, since a comparison of the signal intensities of any resolved NOE cross peak originating from H3' atoms of the duplex can be used to estimate the sum of the (3)J(H3'H2') and (3)J(H3'H2") couplings and thus the puckering type of the deoxyribose ring. Isotope filters to eliminate signals of the (13)C-labeled component in the F1-dimension are implemented, facilitating analyses of high-molecular-weight protein-DNA complexes containing (13)C-labeled protein and unlabeled DNA. The utility of the experiment is demonstrated on the 26-kDa Dead Ringer protein-DNA complex and reveals that the DNA uniformly adopts the S-type configuration when bound to protein.  相似文献   

18.
In this paper we design a class of numerical schemes that are higher-order extensions of the weighted essentially non-oscillatory (WENO) schemes of G.-S. Jiang and C.-W. Shu (1996) and X.-D. Liu, S. Osher, and T. Chan (1994). Used by themselves, the schemes may not always be monotonicity preserving but coupled with the monotonicity preserving bounds of A. Suresh and H. T. Huynh (1997) they perform very well. The resulting monotonicity preserving weighted essentially non-oscillatory (MPWENO) schemes have high phase accuracy and high order of accuracy. The higher-order members of this family are almost spectrally accurate for smooth problems. Nevertheless, they, have robust shock capturing ability. The schemes are stable under normal CFL numbers. They are also efficient and do not have a computational complexity that is substantially greater than that of the lower-order members of this same family of schemes. The higher accuracy that these schemes offer coupled with their relatively low computational complexity makes them viable competitors to lower-order schemes, such as the older total variation diminishing schemes, for problems containing both discontinuities and rich smooth region structure. We describe the MPWENO schemes here as well as show their ability to reach their designed accuracies for smooth flow. We also examine the role of steepening algorithms such as the artificial compression method in the design of very high order schemes. Several test problems in one and two dimensions are presented. For multidimensional problems where the flow is not aligned with any of the grid directions it is shown that the present schemes have a substantial advantage over lower-order schemes. It is argued that the methods designed here have great utility for direct numerical simulations and large eddy simulations of compressible turbulence. The methodology developed here is applicable to other hyperbolic systems, which is demonstrated by showing that the MPWENO schemes also work very well on magnetohydrodynamical test problems.  相似文献   

19.
A subspace time-domain algorithm for automated NMR spectral normalization   总被引:2,自引:0,他引:2  
Recently, two methods have been proposed for quantitatively comparing NMR spectra of control and treated samples, in order to examine the possible occurring variations in cell metabolism and/or structure in response to numerous physical, chemical, and biological agents. These methods are the maximum superposition normalization algorithm (MaSNAl) and the minimum rank normalization algorithm (MiRaNAl). In this paper a new subspace-based time-domain normalization algorithm, denoted by SuTdNAl (subspace time-domain normalization algorithm), is presented. By the determination of the intersection of the column spaces of two Hankel matrices, the common signal poles and further on the components having proportionally varying amplitudes are detected. The method has the advantage that it is computationally less intensive than the MaSNAl and the MiRaNAl. Furthermore, no approximate estimate of the normalization factor is required. The algorithm was tested by Monte Carlo simulations on a set of simulation signals. It was shown that the SuTdNAl has a statistical performance similar to that of the MiRaNAl, which itself is an improvement over the MaSNAl. Furthermore, two samples of known contents are compared with the MiRaNAl, the SuTdNAl, and an older method using a standard. Finally, the SuTdNAl is tested on a realistic simulation example derived from an in vitro measurement on cells.  相似文献   

20.
The pulse sequences HNCACB and CBCANH correlating side chain C(beta) resonances with amide resonances in the protein backbone do not distinguish between inter- and intraresidue correlations. The new pulse sequences sequential HNCACB and sequential CBCANH make this distinction by suppressing coherence transfer between 13C(alpha) and 15N via the one-bond J(NC(alpha)) coupling so that only the sequential correlations are observed in the spectrum. The experimental results of applying sequential HNCACB in a clean-TROSY-adapted implementation to the protein Chymotrypsin Inhibitor 2 at 800 MHz are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号