首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pechini type polymerizable complex decomposition method is employed to prepare LiTi(2)(PO(4))(3) at 1000 °C in air. High energy ball milling followed by carbon coating by the glucose-method yielded C-coated nano-LiTi(2)(PO(4))(3) (LTP) with a crystallite size of 80(±5) nm. The phase is characterized by X-ray diffraction, Rietveld refinement, thermogravimetry, SEM, HR-TEM and Raman spectra. Lithium cycling properties of LTP show that 1.75 moles of Li (~121 mA h g(-1) at 15 mA g(-1) current) per formula unit can be reversibly cycled between 2 and 3.4 V vs. Li with 83% capacity retention after 70 cycles. Cyclic voltammograms (CV) reveal the two-phase reaction mechanism during Li insertion/extraction. A hybrid electrochemical supercapacitor (HEC) with LTP as negative electrode and activated carbon (AC) as positive electrode in non-aqueous electrolyte is studied by CV at various scan rates and by galvanostatic cycling at various current rates up to 1000 cycles in the range 0-3 V. Results show that the HEC delivers a maximum energy density of 14 W h kg(-1) and a power density of 180 W kg(-1).  相似文献   

2.
Size controlled, nanoparticulate Li(2)MnSiO(4) cathodes were successfully prepared by sol-gel route. Effects of calcination temperature and carbon content (adipic acid) were studied during synthesis process. EPR study was conducted to ensure the formation of phase through oxidation state of manganese. Microscopic pictures indicate spherical shape morphology of the synthesized Li(2)MnSiO(4) nanoparticles. Transmission electron microscopic pictures confirmed the presence of carbon coating on the surface of the particles. Further, the optimization has been performed based on phase purity and its battery performance. From the optimization, 700°C and 0.2 mol adipic acid (against total metal ion present in the compound) were found better conditions to achieve high performance material. The Li(2)MnSiO(4) nanoparticles prepared in the aforementioned conditions exhibited an initial discharge capacity of ~113 mAh g(-1) at room temperature in Li/1M LiPF(6) in EC:DMC/Li(2)MnSiO(4) cell configuration. All the Li(2)MnSiO(4) nanoparticles prepared at various conditions experienced the capacity fade during cycling.  相似文献   

3.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

4.
A facile two-step hydrothermal method is developed for the large-scale preparation of lithium nickel manganese oxide spinel as a cathode material for lithium ion batteries. In the reaction, nickel is introduced in a first step at neutral pH, followed by lithium insertion under base to form a product having composition Li(1.02)Ni(0.5)Mn(1.5)O(3.88). The X-ray diffraction pattern and Raman spectroscopy of the synthesized material support a cubic Fd3m structure in which Ni and Mn are disordered on the 16d Wyckoff site, necessary for good cycling characteristics. XP spectroscopy and elemental analysis confirms that Mn remains reduced in the final product (Z(Mn) = 3.82) and that two different chemical environments for Ni exist on the surface. SEM imaging shows a primary particle size of ~200 nm, and galvanostatic cycling of the material vs. Li(+/0) gives a reversible gravimetric capacity of ~120 mA h g(-1) at 1 C rate (147 mA g(-1)) with reversible cycling up to 1470 mA g(-1), supported by rapid Li(+) diffusion. The capacity fade at 1 C is substantial, 17.3% over the first 100 cycles between 3.4 and 5.0 V. However, when the voltage limits are altered, the capacity retention is excellent: nearly 100% when cycled either between 3.4 and 4.4 V (where oxygen vacancies are not electrochemically active) or 89% when cycled between 4.4 and 5.0 V (where the Jahn-Teller active Mn(4+/3+) couple is not accessed).  相似文献   

5.
唐致远  袁威  闫继  毛文峰  马莉 《电化学》2012,(2):113-117
以Li2CO3、NH4H2PO4、V2O5和MoO3为原料,柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备了锂离子正极材料Li3MoxV2-x(PO4)3/C(x=0.01,0.02,0.03).X射线衍射(XRD)表明,合成的材料具有单一的单斜晶系结构,空间群为P21/n.扫描电镜(SEM)显示Li3Mo0.02V1.98(PO4)3/C具有均一的表面形貌.恒流充放电测试表明,当x=0.02时,掺杂后的Li3Mo0.02V1.98(PO4)3具有最佳的电化学性能.在1C倍率下,3.0~4.3 V电位区间,Li3Mo0.02V1.98(PO4)3/C的首次放电比容量达到122.3 mAh.g-1,循环50周之后,容量没有衰减的迹象;而当x=0、0.01和0.03时,首次放电比容量仅分别为117.1、115.1和116.0 mAh.g-1.在3C和5C倍率下,样品Li3Mo0.02V1.98(PO4)3/C仍能保持优异的循环稳定性.  相似文献   

6.
金属锂具有最高的理论比容量(3860 mAh·g?1)和最低的还原电势(?3.04 V),是新型高能量密度电池负极材料的最佳选择之一。然而由于金属锂负极表面自发生成的固态电解质界面(SEI)十分不稳定,导致锂枝晶的产生和电池容量快速衰减,严重限制了锂金属电池的商业化应用。因此,本工作利用碳酸双(2,2,2-三氟乙基)酯(DTFEC)添加剂在三维锡锂合金/碳纸负极(SnLi/Cp)表面原位构筑了高机械强度和离子穿透性的含氟化物(LiF和SnF2)保护层,有效地改善了锂负极的倍率性能和循环稳定性。结果显示,SnLi/Cp对称电池在8 mA·cm?2的电流密度下经过100次循环后过电位仅为90 mV。当将电解液降低到12μL(1.5μL·(mAh)?1)时,在5 mA·cm?2的电流密度下对称电池仍具有优异的稳定性;SnLi/Cp||NMC811电池在1C(1.5 mA·cm?2)条件下能稳定循环300圈以上,库伦效率高达98.1%。这种方法能够显著改善锂金属负极的循环稳定性,有助于实现高能量密度锂金属电池的实际应用。  相似文献   

7.
金属锂具有超高的理论容量(3860 mAh·g-1)和低氧化还原电位(-3.04 V vs.标准氢电极),是极具吸引力的下一代高能量密度电池的负极材料。然而,循环过程中的体积膨胀、锂枝晶生长和“死锂”等问题严重的限制了其实际应用。合理设计三维骨架调控金属锂的成核行为是抑制锂枝晶生长的有效策略。本文中,我们发展了一种“软硬双模板”的方法合成了兼具大孔和介孔的三维碳-碳化钛(Three-dimensional macro-/mesoporous C-TiC,表示为3DMM-C-TiC)复合材料。多级孔道为金属锂的沉积提供了足够的空间,缓冲充放电中巨大的体积变化。此外,TiC的引入显著增强多孔骨架的导电性,改善锂金属的成核行为,促进金属锂的均匀成核和沉积,抑制锂枝晶生长。3DMM-C-TiC||Li电池测试表明,在循环300圈以后,库伦效率仍保持在98%以上。此外,所得材料与LiFePO4 (LFP)组成的全电池也表现出优异的倍率和循环性能。本工作为无枝晶锂金属负极的设计提供了新的思路。  相似文献   

8.
锂金属是下一代高能量密度电池的关键负极,然而其实用化面临着一系列问题,主要包括循环过程中体积变化大、枝晶生长等。使用三维集流体是解决这些问题的有效方法,然而现有大多数三维集流体存在重量大、体积大、表面亲锂性差、成本高等问题。针对上述问题,本文以低成本的细菌纤维素为前驱体,通过直接碳化制备出具有连通网络的轻质三维碳集流体,其表面均匀分布的含氧官能团可以促进锂离子的均匀成核和沉积,有效抑制了枝晶生长。值得注意的是,该集流体的面密度仅为0.32 mg·cm?2,在3 mAh·cm?2比容量的锂金属负极中质量占比仅为28.8%。电化学测试结果表明,该集流体在3 mA·cm?2的高电流密度或4 mAh·cm?2的高循环容量的工作条件下,稳定循环超过150次,并且在对称电池或与LiNi0.8Co0.15Al0.05匹配的全电池中也表现出良好的电化学性能。  相似文献   

9.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

10.
A PTMA (poly(4-methacryloyloxy-2,2,6,6-tetramethyl-piperidine-N-oxyl)) electrode with high energy density is prepared with Black Pearl 2000 (BP-2000). For comparisons, vapor grown carbon fiber (VGCF) and acetylene black (AB) are also employed to fabricate the PTMA-electrodes. The electrochemical properties of the electrode are improved obviously by employing BP-2000. The specific capacity of the PTMA-BP electrode based on the mass of PTMA is 26.7% larger than that of the PTMA-VGCF and PTMA-AB electrodes at a 1 C rate. At higher discharge rates, the polarization degree of the Li/PTMA-BP cell is the minimum one. At a discharge rate of 50 C, the specific capacity of the PTMA-BP electrode is 104.9 mA h g?1, and is 27.6 and 16.7% larger than that of the PTMA-VGCF and PTMA-AB electrodes, respectively. Besides, the discharge plateau of the Li/PTMA-BP cell is 3.35 V, and is 0.03 and 0.13 V higher than that of the Li/PTMA-AB and Li/PTMA-VGCF cells, respectively. The larger specific capacity of BP-2000 and the improved electrochemical kinetics of PTMA at the surface of BP carbon, resulted from the larger surface area of BP-2000, are the main factors for improving the capacity and rate capability of the PTMA-electrode. The high specific surface area of BP-2000 is also beneficial to the thorough contact of PTMA with BP carbon, resulting in the improved conductivity of the PTMA-BP composites. The cycling performance of the PTMA-BP electrode is also satisfied.  相似文献   

11.
现场热引发聚丙烯酸酯类电解质的性能及应用   总被引:3,自引:0,他引:3  
应用热引发现场聚合方法制备聚丙烯酸酯类电解质,并考察其电化学性能.实验表明:该聚合物电解质具有 4. 5V的电化学稳定窗口,较高的室温电导率及良好的低温性能.当前驱体电解液中液态电解质含量为 85%时,其室温电导率为 3. 2×10-3S·cm-1, -30℃下的电导率达到 5. 6×10-4 S·cm-1.采用现场聚合技术制备的聚合物电池,其电化学性能与液态锂离子电池基本一致,首次充放电效率为 92. 1%, 1. 0C率放电容量为 0. 2C率的 95%, -20℃下的放电容量为室温容量的 72%,以 0. 5C率循环 300周后,仍保持初始容量的 85%以上.  相似文献   

12.
Lithium (Li) metal is regarded as the ultimate anode material for use in Li batteries due to its high theoretical capacity (3860 mA h g−1). However, the Li dendrites that are generated during iterative Li plating/stripping cycles cause poor cycling stability and even present safety risks, and thus severely handicap the commercial utility of Li metal anodes. Herein, we describe a graphene and carbon nanotube (CNT)-based Li host material that features vertically aligned channels with attached ZnO particles (designated ZnO@G-CNT-C) and show that the material effectively regulates Li plating and stripping. ZnO@G-CNT-C is prepared from an aqueous suspension of Zn(OAc)2, CNTs, and graphene oxide by using ice to template channel growth. ZnO@G-CNT-C was found to be mechanically robust and capable of guiding Li deposition on the inner walls of the channels without the formation of Li dendrites. When used as an electrode, the material exhibits relatively low polarization for Li plating, fast Li-ion diffusion, and high Coulombic efficiency, even over hundreds of Li plating/stripping cycles. Moreover, full cells prepared with ZnO@G-CNT-C as Li host and LiFePO4 as cathode exhibit outstanding performance in terms of specific capacity (155.9 mA h g−1 at 0.5 C), rate performance (91.8 mA h g−1 at 4 C), cycling stability (109.4 mA h g−1 at 0.5 C after 800 cycles). The methodology described can be readily adapted to enable the use of carbon-based electrodes with well-defined channels in a wide range of contemporary applications that pertain to energy storage and delivery.  相似文献   

13.
A composite cathode material for lithium ion battery applications, Mo-doped LiFePO(4)/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO(4)-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo(6+) doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO(4) nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO(4) particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO(4) cathodes. In particular, Mo-doped LiFePO(4)/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO(4)/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility.  相似文献   

14.
金属锂由于其高的比容量,低的电极电势和轻质等特点被认为是下一代高能量密度锂金属二次电池负极材料的最佳选择。然而,充放电循环中不均匀的锂沉积会导致严重的体积变化和大量的锂枝晶形成,从而影响了电池的库伦效率甚至会带来严重的安全隐患。为此,本文设计了一种亲锂的三维二硫化锡@碳纤维布复合基底材料,并作为集流体将其应用于金属锂电池上。一者,高比表面积的三维碳纤维骨架可以适应充放电过程中的体积变化并且有效地降低局部电流密度,从而确保锂的均匀沉积。二者,表面修饰的SnS2层在锂沉积过程中可以形成Li-Sn合金界面层,诱导锂的沉积并降低过电势。最终,实验结果表明:使用所制备的复合集流体与金属锂搭配组成的半电池可以在5 mA·cm-2的高电流密度下以>98%的库伦效率稳定循环100周以上。此外,在承载10 mAh·cm-2的金属锂后,复合的锂负极无论是在对称电池还是与磷酸铁锂组装成的实际电池中,均可以在高的电流密度下实现稳定的循环。我们相信这一复合的集流体构建策略对于设计安全稳定的锂金属电池或器件具有重要意义。  相似文献   

15.
金属锂由于其极高的理论比容量(3860mAh·g~(-1),2061mAh·cm~(-3))和低的还原电势(相对于标准氢电极(SHE)为-3.04 V)等特点,成为了高能量密度锂电池负极材料的极佳选择之一。从上个世纪七十年代开始,科研工作者便开始了金属锂负极的研究,然而,由于金属锂与电解液反应严重,镀锂过程体积膨胀大,且在循环中易生成枝晶,以金属锂为负极的电池循环稳定性差,而且容易短路从而带来安全隐患。因此金属锂做为锂电池负极的商业化推广最终没有成功。在本工作中,我们在前期设计的锂-碳纳米管复合微球(Li-CNT)中引入了纳米硅颗粒制备了硅颗粒担载的锂-碳复合球(LiCNT-Si)。实验发现,纳米硅颗粒的加入不仅提高了锂-碳复合微球的载锂量(10%(质量百分含量)的硅添加量使得比容量从2000 mAh·g~(-1)提高到2600 mAh·g~(-1)),降低了锂的沉积/溶解过电势,有利于引导锂离子回到复合微球内部沉积,大大提高了材料的循环稳定性。同时,担载了纳米硅颗粒的锂-碳复合球也继承了锂-碳复合微球循环过程中体积膨胀小,不长枝晶的优点。而且添加的纳米硅颗粒还填充了Li-CNT微球中的孔隙,减少了电解液渗入复合微球内部腐蚀里面的金属锂,进一步提高了材料的库仑效率。以添加10%硅的锂碳复合材料作为负极,与商用磷酸铁锂正极组成全电池,在常规酯类电解液中1C (0.7 mA·cm~(-2))条件下能稳定循环900圈以上,库仑效率为96.7%,大大高于同样条件下测得的Li-CNT复合材料(90.1%)和金属锂片(79.3%)的库仑效率。因此,这种通过简单的熔融浸渍法即可制备的,具有高的比容量和长的循环稳定性的锂硅-碳复合材料具有较大的潜能成为高能量密度电池的负极材料,尤其适用于锂硫、锂氧这种正极不含锂源的电池体系。  相似文献   

16.
以具有气相碳化形式的精制煤焦油沉积碳为壳层材料、人造石墨(AG)及中间相石墨微球(2800℃)为核材料制备了核壳结构的碳及碳电极.核壳结构碳及核壳结构碳电极的充放电研究表明碳负极的稳定充放电容量及首次充放电效率都得到了较大的改善,循环伏安研究表明在0.7V(vsLi+/Li)左右用于形成碳电极表面钝化膜的溶剂的还原分解峰显著减小,显示了核壳结构碳材料电极对电极表面钝化膜的影响作用,X射线衍射研究揭示了石墨及石墨电极上的无定形碳壳层的存在  相似文献   

17.
应用高温固相合成法制备L i[N i0.475Mn0.475Co0.05]O2.XRD,SEM,循环伏安及充放电容量测试表明,在800℃下煅烧合成的样品具有较高的嵌锂容量和良好的循环稳定性,如在20 mA/g和2.3~4.6 V的电压范围内,其首次放电比容量为178.8 mAh/g,循环30周后放电比容量仍能达到150.2 mAh/g,容量损失16.0%.  相似文献   

18.
In this paper, we report the synthesis of carbon coated Li(Mn0.35Co 0.2Fe0.45)PO4 and discuss the effect of Co2P formation during the carbothermal reduction process, which enhances the electrochemical performance of cathode material for lithium ion batteries. It was observed that Co2P was favorably formed in 5% H2/Ar than in Ar atmosphere. The conductivity of Li(Mn0.35Co0.2Fe0.45)PO4/C sintered at 600-800 degrees C in 5% H2/Ar is increased as the temperature is increased. The O K-edge X-ray absorption near edge spectrum (XANES) demonstrates that content of hole carriers is increased in Li(Mn0.35Co0.2Fe0.45)PO4/C as the amount of Co2P increased. We also observed that the capacity of Li(Mn0.35Co0.2Fe0.45)PO4/C is increased with sintering temperature, and it exhibited a maximum capacity of 166 mAh/g at 700 degrees C. It was found that the enhancement in the discharge capacity of sintered Li(Mn0.35Co0.2Fe0.45)PO4/C was as a result of its higher electrical conductivity under 5% H2/Ar atmosphere as compared with Ar atmosphere.  相似文献   

19.
Zeng  Xian-Xiang  Chen  Hui  Guo  Gang  Li  Sheng-Yi  Liu  Jin-Ying  Ma  Qiang  Liu  Guote  Yin  Ya-Xia  Wu  Xiong-Wei  Guo  Yu-Guo 《中国科学:化学(英文版)》2020,63(2):203-207
The pursuit for batteries with high specific energy provokes the research of high-voltage/capacity cathode materials with superior stability and safety as the alternative for lithium iron phosphate.Herein,using the sol-gel method,a lithium vanadium phosphate with higher average discharge voltage(3.8 V,vs.Li+/Li) was obtained from a single source for Mg2+ and Cl-co-substitution and uniform carbon coating,and a nearly theoretical capacity(130.1 mA h g^-1) and outstanding rate performance(25 C) are acquired together with splendid capacity retention(80%) after 650 cycles.This work reveals that the well-sized anion and cation substitution and uniform carbon coating are of both importance to accelerate kinetic performance in the context of nearly undisturbed crystal structure for other analogue materials.It is anticipated that the electrochemistry comprehension will shed light on preparing cathode materials with high energy density in the future.  相似文献   

20.
Olivine-structured LiMnPO(4) with 3D foldaway-lantern-like hierarchical structures have been prepared via a one-step, template-free, solvothermal approach in ethylene glycol. The foldaway-lantern-like LiMnPO(4) microstructures are composed of numerous nanoplates with thickness of about 20 nm. A series of electron microscopy characterization results indicate that the obtained primary LiMnPO(4) nanoplates are single crystalline in nature, growing along the [010] direction in the (100) plane. Time-dependent morphology evolution suggests that ethylene glycol plays dual roles in oriented growth and self-assembly of such unique structures. After carbon coating, the as-prepared LiMnPO(4) cathode demonstrated a flat potential at 4.1 V versus Li/Li(+) with a specific capacity close to 130 mA h g(-1) at 0.1 C, along with excellent cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号