首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

2.
The transient contact resistance for the extruded samples of Bi85Sb15 solid solutions with contact alloys containing lead and tin atoms depending on the thermal annealing, magnetic field intensity and temperature have been investigated. It is shown that observed peculiarities can be explained by the creation in a near-contact region of the intermediate layer doped by Pb and Sn atoms.  相似文献   

3.
The photoconductivity of amorphous Te85Ge15 and Te85Ge10Sb5 obtained from the melt was studied. Two components of photoconductivity were observed: a fast one, dominating at low temperature, and a slow one, dominating at high temperature. Activation energies of the investigated processes were determined. The interpretation of the observed phenomena is based on the Street and Mott model.  相似文献   

4.
The effects of nitrogen doping on the chemical bonding state, microstructure, electrical property and thermal stability of Ge15Sb85 film were investigated in detail. The doped N atoms tend to bond with Ge to form Ge3N4, as proved by X-ray photoelectron spectroscopy analyses. X-ray diffraction patterns showed that both undoped and N-doped Ge15Sb85 films crystallize into a hexagonal phase very similar to Sb. The thickness reduction upon crystallization for undoped and N-doped Ge15Sb85 films is less than 5%. The crystalline resistivity, crystallization temperature, and thermal stability of amorphous state all increase after nitrogen doping, while the grain size decreases. By adding 7.0 at.% N into the Ge15Sb85 film, the crystalline resistivity increases twelve times and the crystallization temperature increases about 50 °C. The maximum temperature for 10-year retention of amorphous Ge15Sb85 film is estimated to be 147 °C and that of N-doped films is even higher, which will promise better data retention of phase-change random access memory especially in the high-temperature application.  相似文献   

5.
The Bi0.9Sb0.1 powders were prepared by mechanical alloying and then pressed under 6 GPa at different pressing temperatures. X-ray diffraction spectra showed that the single phase was formed. The nanostructure of grain was observed by bright-field imaging. Electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The absolute Seebeck coefficient value of 120.3 μV/K was measured at 130 K. The figure-of-merit reached a maximum value of 0.90×10−3 K−1 at 140 K.  相似文献   

6.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

7.
This study is focused on the investigation of the transport properties of Bi86.5Sb13.5 polycrystalline alloys. Bulk materials were prepared by cold pressing ultrafine powders of alloy and by annealing the resulting pellets. Special care was taken to avoid contamination of the powders. Starting with powders of average grain size of 0.06 μm bulk semi-conducting sample with mean grain size respectively of 0.1, 0.8, 2.5 and 200 μm were obtained. The influence of the grain size on both electrical resistivity, thermal conductivity, thermoelectric power, thermoelectric figure of merit is presented within the range 80-330 K. The thermoelectric properties are discussed and compared with those of single crystals presented in previous studies.  相似文献   

8.
Neodymium doped bismuth layer structure ferroelectrics (BLSFs) ceramics CaBi4−xNdxTi4O15 (x=0, 0.25, 0.50, 0.75) were prepared by solid-state reaction method. X-ray diffraction pattern showed that single phase was formed when x=0-0.75. The refined lattice parameters showed that a (b) axes decrease at x=0.25 and increase with more Nd3+ dopant. The effects of Nd3+ doping on the dielectric and ferroelectric properties of CaBi4Ti4O15 ceramics are studied. Nd3+ dopant decreased the Curie temperature linearly, and the dielectric loss, tan δ, as well. The remnant polarization of Nd3+ doped CaBi4Ti4O15 ceramics was increased by 80% at x=0.25, while more Nd3+ dopant decreased the remnant polarization. CaBi3.75Nd0.25Ti4O15 ceramics had the largest piezoelectric constant d33. The structure and properties of CaBi4−xNdxTi4O15 ceramics showed that Nd3+ may occupy different crystal locations when Nd3+ content x is less than 0.25 and more than 0.50.  相似文献   

9.
Optical absorption and ESR spectra of Bi12GeO20 doped with Cr were measured before and after illumination with visible light. It was found that Cr4+ ions in tetrahedral position are responsible for light induced ESR and optical spectra. The g-factor of the center is 1.945 ± 0.002. Crystal field parameters for the Cr4+ center are Dq = 820 cm?1 and B = 429cm?1. The photochromic effect is explained in terms of a Cr5+?Cr4+ charge transfer process.  相似文献   

10.
In this work we report the synthesis of polycrystalline samples of Bi5FeTi3O15 and Bi3R2FeTi3O15 new compounds with R=Nd, Sm, Gd, Dy, Ho and Yb. The materials were synthesized by the standard solid state reaction recipe from high purity (99.99%) powders. The structural characteristics of materials were analyzed by X-ray diffraction experiments. Rietveld refinement by the GSAS code was performed, taking the input data from the ICSD 74037 database. Results reveal that materials crystallized in orthorhombic single-phase structures and space group Fmm2. Measurements of polarization as a function of applied electric field were carried out using a Radiant Technology polarimeter. We determine the occurrence of hysteretic behaviors, which are characteristic of ferroelectric materials. The main values of remnant and coercive applied fields were observed for substitutions with Yb and Nd, which have the main atomic radii.  相似文献   

11.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

12.
利用传统固相反应法成功制备出Nb掺杂量x不同的Ca0.9Yb0.1Mn1-xNbxO3热电陶瓷. X射线衍射分析和扫描电子显微镜分析表明: 样品均形成了单一的钙钛矿正交结构,空间群为Pnma. 晶格常数a和晶胞体积随着Nb掺杂量x的增加而增大,陶瓷样品具有很好的结晶度和很高的致密性, 相对密度达到97%左右. 在3 关键词: 3陶瓷')" href="#">CaMnO3陶瓷 电阻率 Seebeck系数  相似文献   

13.
关童  滕静  吴克辉  李永庆 《物理学报》2015,64(7):77201-077201
本文报道了拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中线性磁阻问题的系统性研究工作. 此体系中, 线性磁阻在很宽的温度和磁场范围内出现: 磁场高达18 T时磁阻仍没有饱和趋势, 并且当温度不高于50 K时, 线性磁阻的大小对温度的变化不敏感. 栅压调控化学势可明显改变线性磁阻的大小. 当化学势接近狄拉克点时, 线性磁阻最为显著. 这些结果说明电荷分布的不均匀性是引起该材料线性磁阻的根源.  相似文献   

14.
Bismuth selenide crystals were grown from melts with liquid concentrations within 0·2 per cent of stoichiometry. The resulting crystals were examined structurally showing that single crystal samples could be cut for electronic property measurements. Samples were n-type and degenerate (n ~ 2 × 1025 m?3). Hall, magnetoresistance and Shubnikov-de Haas measurements confirm that the carriers lie in a single minimum located at the centre of the Brillouin Zone. The results are discussed in terms of a non-ellipsoidal band model, and the degeneracy discussed in terms of a defect model.  相似文献   

15.
The anisotropy of the spontaneous resistivity is measured in the ferromagnetic range for PrAl2 and DyAl2 single crystals. For PrAl2 we observed a change of sign in the temperature dependence of θ6 ? θ which cannot be obtained from existing quadrupole scattering models.  相似文献   

16.
Polycrystalline ceramic samples of Bi2Sn2−xTixO7 (x=0.00, 0.2, 0.4, 0.6 and 0.8) have been synthesized by standard high temperature solid state reaction method. The effect of homovalent cation (titanium) substitution on the Sn-site on the structural and electrical properties of the pure Bi2Sn2O7 ceramic have been studied by X-ray diffraction followed by SEM, dielectric and dc conductivity studies. The structural analysis indicates that the increase of titanium contents do not lead to any secondary phase. The frequency and temperature dependent dielectric studies have been carried out. It is found that the Ti doping reduces the material particle size. The size of the particles are strongly influenced by the addition of titanium to the system. The substitution of Ti for Sn ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The activation energies of all the compounds were calculated using the relation σ=σ0exp(−Ea/kT).  相似文献   

17.
In this paper, n-type lead telluride (PbTe) compounds doped with Bi2Te3 have been successfully prepared by high pressure and high temperature (HPHT) technique. The composition-dependent thermoelectric properties of PbTe doped with Bi2Te3 have been studied at room temperature. The figure-of-merit, Z, for PbTe is very sentivite to the dopants, which could be improved largely although the doped content of Bi2Te3 is very small (<0.08 mol%). In addition, the maximum value reaches to 9.3×10−4 K−1, which is about 20% higher than that of PbTe alloyed with Bi2Te3 sintered at ambient pressure (7.6×10−4 K−1) and several times higher than that of small grain size PbTe containing other dopants. The improved thermoelectric performance in this study may be due to the effect of high pressure and the low lattice thermal conductivity resulting from Bi2Te3 as source of dopants.  相似文献   

18.
The optical properties of binary and ternary germanate glasses 40.3GeO2-59.7PbO, 31.3GeO2-26.8PbO-41.9Bi2O3 and 31.5GeO2-40.4PbO-28.1Bi2O3 (wt%) doped with Er3+ were investigated. The Judd-Ofelt intensity parameters were calculated and the near-infrared luminescence as well as the upconversion efficiency was analyzed. We observed that the ternary germanate glass containing the highest concentration of Bi2O3 presented the largest emission bandwidth for 4I13/2 → 4I15/2 transition and the highest infrared-to-visible upconversion efficiency among the samples studied. These results demonstrate that not only the presence of Bi2O3 but also the careful choice of its molecular weight plays a key role in optimizing parameters for using germanate glasses for photonics applications.  相似文献   

19.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

20.
By using a multicalcination procedure, Co-doped Bi4NdTi3Fe1?xCoxO15 (x=0.1,0.3,0.5 and 0.7) (Cox) ceramics were synthesized. The samples showed a single-phase (SP) Aurivillius structure containing four perovskite layers. Plate-like morphology of the grains which is related to the layered perovskite structure of the samples was clearly observed by SEM. The multiferroic properties of the samples at room temperature (RT) were demonstrated by dielectric, ferroelectric and magnetic measurements. With x ranging from 0.1 to 0.7, all the samples show RT multiferroic properties although there is no obvious regularity between the Co content and the multiferroic property. Very interestingly, Co0.3 sample exhibits the optimum RT magnetic property, which can be attributed to the inclination of occupying the inner octahedra center for doped Co ions and the nearly 1:1 ratio of Fe and Co ions in the inner octahedra. The present work offers new insight into the compositional design of promising lead-free RT multiferroic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号