首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Previous empirical and analytical investigations into human sound localization have illustrated that the head-related transfer function (HRTF) and interaural cues are affected by the acoustic material properties of the head. This study utilizes a recent analytical treatment of the sphere scattering problem (which accounts for a hemispherically divided surface boundary) to investigate the contribution of hair to the auditory cues below 5 kHz. The hair is modeled using a locally reactive equivalent impedance parameter, and cue changes are discussed for several cases of measured hair impedance. The hair is shown to produce asymmetric perturbations to the HRTF and the interaural time and level differences. The changes in the azimuth plane are explicated via analytical examination of the surface pressure variations with source angle. Experimental HRTFs obtained using a sphere with and without a hemispherical covering of synthetic hair show a good agreement with analytical results. Additional experimental and analytical investigations illustrate that the relative contribution of the hair remains robust, regardless of the placement of the pinnas, or inclusion of a cylindrical neck.  相似文献   

2.
Sound source localization on the horizontal plane is primarily determined by interaural time differences (ITDs) for low-frequency stimuli and by interaural level differences (ILDs) for high-frequency stimuli, but ITDs in high-frequency complex stimuli can also be used for localization. Of interest here is the relationship between the processing of high-frequency ITDs and that of low-frequency ITDs and high-frequency ILDs. A few similarities in human performance with high- and low-frequency ITDs have been taken as evidence for similar ITD processing across frequency regions. However, such similarities, unless accompanied by differences between ITD and ILD performance on the same measure, could potentially reflect processing attributes common to both ITDs and ILDs rather than to ITDs only. In the present experiment, both learning and variability patterns in human discrimination of ITDs in high-frequency amplitude-modulated tones were examined and compared to previously obtained data with low-frequency ITDs and high-frequency ILDs. Both patterns for high-frequency ITDs were more similar to those for low-frequency ITDs than for high-frequency ILDs. These results thus add to the evidence supporting similar ITD processing across frequency regions, and further suggest that both high- and low-frequency ITD processing is less modifiable and more noisy than ILD processing.  相似文献   

3.
To a first-order approximation, binaural localization cues are ambiguous: many source locations give rise to nearly the same interaural differences. For sources more than a meter away, binaural localization cues are approximately equal for any source on a cone centered on the interaural axis (i.e., the well-known "cone of confusion"). The current paper analyzes simple geometric approximations of a head to gain insight into localization performance for nearby sources. If the head is treated as a rigid, perfect sphere, interaural intensity differences (IIDs) can be broken down into two main components. One component depends on the head shadow and is constant along the cone of confusion (and covaries with the interaural time difference, or ITD). The other component depends only on the relative path lengths from the source to the two ears and is roughly constant for a sphere centered on the interaural axis. This second factor is large enough to be perceptible only when sources are within one or two meters of the listener. Results are not dramatically different if one assumes that the ears are separated by 160 deg along the surface of the sphere (rather than diametrically opposite one another). Thus for nearby sources, binaural information should allow listeners to locate sources within a volume around a circle centered on the interaural axis on a "torus of confusion." The volume of the torus of confusion increases as the source approaches the median plane, degenerating to a volume around the median plane in the limit.  相似文献   

4.
Previous analytical and empirical studies of the human auditory system have shown that the cues used for localization are modified by the inclusion of nonrigid scattering surfaces (clothing, hair etc). This paper presents an investigation into the acoustic impedance properties of human hair. The legitimacy of a locally reactive surface assumption is investigated, and an appropriate boundary condition is formulated to account for the physiological composition of a human head with hair. This utilizes an equivalent impedance parameter to allow the scattering boundary to be defined at a reference plane coincident with the inner rigid surface of the head. Experimental examination of a representative synthetic hair material at oblique incidence is used to show that a locally reactive surface assumption is legitimate. Additional experimental analysis of a simple scattering problem illustrates that the equivalent impedance must be used in favor of the traditional surface impedance to yield physically correct pressure magnitudes. The equivalent acoustic impedance properties of a representative range of human hair samples are discussed, including trends with sample thickness, fiber diameter, bulk density, and mass.  相似文献   

5.
A general analytical model is developed for the scattering of sound by a sphere with a nonuniform impedance boundary condition that is divided into two uniformly distributed hemispheres. In addition to the overall solution for the time harmonic pressure, the analytical result gives insight into the modal contributions and coupling for different cases of source incidence and boundary impedance. Modal cross coupling is shown to exist between incoming and scattered wave modes of equi-order and nonequal degree when the degrees are opposite in parity (odd-even or even-odd coupling). This cross coupling is strongest between modes of adjacent degree, and decreases as the degrees become dissimilar. The overall magnitude of the cross coupling is dependent on the extent of the impedance mismatch between the two surface hemispheres. Simulation and discussion are given for several specific cases of source incidence and impedance (each hemisphere is given a different constant impedance value). These results are consistent with expectations from the scattering of sound by a sphere with a uniformly distributed surface boundary. The broad scattering characteristics of the hemispherically divided sphere are shown to be analogous to connecting the appropriate sectors from the corresponding uniformly distributed spheres.  相似文献   

6.
Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.  相似文献   

7.
The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .  相似文献   

8.
Narrow-band sound localization related to external ear acoustics.   总被引:3,自引:0,他引:3  
Human subjects localized brief 1/6-oct bandpassed noise bursts that were centered at 6, 8, 10, and 12 kHz. All testing was done under binaural conditions. The horizontal component of subjects' responses was accurate, comparable to that for broadband localization, but the vertical and front/back components exhibited systematic errors. Specifically, responses tended to cluster within restricted ranges that were specific for each center frequency. The directional transfer functions of the subjects' external ears were measured for 360 horizontal and vertical locations. The spectra of the sounds that were present in the subjects' ear canals, the "proximal stimulus" spectra, were computed by combining the spectra of the narrow-band sound sources with the directional transfer functions for particular stimulus locations. Subjects consistently localized sounds to regions within which the associated directional transfer function correlated most closely with the proximal stimulus spectrum. A quantitative model was constructed that successfully predicted subjects' responses based on interaural level difference and spectral cues. A test of the model, using techniques adapted from signal detection theory, indicated that subjects tend to use interaural level difference and spectral shape cues independently, limited only by a slight spatial correlation of the two cues. A testing procedure is described that provides a quantitative comparison of various predictive models of sound localization.  相似文献   

9.
A series of experiments has examined the auditory localization of a nearby (< 1 m) sound source under four conditions: (1) a fixed-amplitude condition where loudness-based distance cues were available; (2) a monaural condition where the contralateral ear was occluded by an ear-plug and muff; (3) a high-pass condition where the stimulus bandwidth was 3 Hz to 15 kHz; and (4) a low-pass condition where the stimulus bandwidth was 200 Hz to 3 kHz. The results of these experiments were compared to those of a previous experiment that measured localization performance for a nearby broadband, random-amplitude source [Brungart et al., J. Acoust. Soc. Am. 106, 1956-1968 (1999)]. Directional localization performance in each condition was consistent with the results of previous far-field localization experiments. Distance localization accuracy improved slightly in the fixed-amplitude condition relative to the earlier broadband random-amplitude experiment, especially near the median plane, but was severely degraded in the monaural condition. Distance accuracy was also found to be highly dependent on the low-frequency energy of the stimulus: in the low-pass condition, distance accuracy was similar to that in the broadband condition, while in the high-pass condition, distance accuracy was significantly reduced. The results suggest that low-frequency interaural level differences are the dominant auditory distance cue in the proximal region.  相似文献   

10.
The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs.  相似文献   

11.
The phenomenon of binaural interference, where binaural judgments of a high-frequency target stimulus are disrupted by the presence of a simultaneous low-frequency interferer, can largely be explained using principles of auditory grouping and segregation. Evidence for this relationship comes from a number of previous studies showing that the manipulation of simultaneous grouping cues such as harmonicity and onset synchrony can influence the strength of the phenomenon. In this study, it is shown that sequential grouping cues can also influence whether binaural interference occurs. Subjects indicated the lateral position of a high-frequency sinusoidally amplitude-modulated (SAM) tone containing an interaural time difference. Perceived lateral positions were reduced by the presence of a simultaneous diotic low-frequency SAM tone, but were largely restored when the interferer was "captured" in a stream of identical tones. A control condition confirmed that the effect was not due to peripheral adaptation. The data lend further support to the idea that binaural interference is affected by processes related to the perceptual organization of auditory information. Modifications to existing grouping-based models are proposed that may help account for binaural interference effects more successfully.  相似文献   

12.
The problem of propagation of inhomogeneous waves in anisotropic porous layered medium is studied using transfer matrix. Firstly, transfer matrix for an anisotropic porous layer is derived. Biot's poro-elastic theory is incorporated to model the acoustics of anisotropic porous layer. The interface between porous layer and elastic half-space is considered as imperfect and modified boundary conditions are applied for this more realistic situation. The theory of transfer matrix is used to derive the analytical expression for the surface impedance. Numerical computation of results is done for different degrees of bonding in the low as well as high-frequency range. In the first case, which is relevant to geophysical studies, the surface impedance is predicted for low-frequency range and surface impedance for second model is computed in high-frequency range. It is observed that loose bondedness is accompanied by the loss of energy at the interface. The technique of transfer matrix is utilized to compute the surface impedance in both cases. The role of surface impedance in seismological studies and in the study of composites is discussed.  相似文献   

13.
The current understanding of mammalian sound localization is that azimuthal (horizontal) position assignments are dependent upon the relative activation of two populations of broadly-tuned hemifield neurons with overlapping medial borders. Recent psychophysical work has provided evidence for a third channel of low-frequency interaural time difference (ITD)-sensitive neurons tuned to the azimuthal midline. However, the neurophysiological data on free-field azimuth receptive fields, especially of cortical neurons, has primarily studied high-frequency cells whose receptive fields are more likely to have been shaped by interaural level differences (ILDs) than ITDs. In four experiments, a selective adaptation paradigm was used to probe for the existence of a midline channel in the domain of ILDs. If no midline channel exists, symmetrical adaptation of the lateral channels should not result in a shift in the perceived intracranial location of subsequent test tones away from the adaptors because the relative activation of the two channels will remain unchanged. Instead, results indicate a shift in perceived test tone location away from the adaptors, which supports the existence of a midline channel in the domain of ILDs. Interestingly, this shift occurs not only at high frequencies, traditionally associated with ILDs in natural settings, but at low frequencies as well.  相似文献   

14.
An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency "transposed" stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.  相似文献   

15.
A human psychoacoustical experiment is described that investigates the role of the monaural and interaural spectral cues in human sound localization. In particular, it focuses on the relative contribution of the monaural versus the interaural spectral cues towards resolving directions within a cone of confusion (i.e., directions with similar interaural time and level difference cues) in the auditory localization process. Broadband stimuli were presented in virtual space from 76 roughly equidistant locations around the listener. In the experimental conditions, a "false" flat spectrum was presented at the left eardrum. The sound spectrum at the right eardrum was then adjusted so that either the true right monaural spectrum or the true interaural spectrum was preserved. In both cases, the overall interaural time difference and overall interaural level difference were maintained at their natural values. With these virtual sound stimuli, the sound localization performance of four human subjects was examined. The localization performance results indicate that neither the preserved interaural spectral difference cue nor the preserved right monaural spectral cue was sufficient to maintain accurate elevation judgments in the presence of a flat monaural spectrum at the left eardrum. An explanation for the localization results is given in terms of the relative spectral information available for resolving directions within a cone of confusion.  相似文献   

16.
Animals live in cluttered auditory environments, where sounds arrive at the two ears through several paths. Reflections make sound localization difficult, and it is thought that the auditory system deals with this issue by isolating the first wavefront and suppressing later signals. However, in many situations, reflections arrive too early to be suppressed, for example, reflections from the ground in small animals. This paper examines the implications of these early reflections on binaural cues to sound localization, using realistic models of reflecting surfaces and a spherical model of diffraction by the head. The fusion of direct and reflected signals at each ear results in interference patterns in binaural cues as a function of frequency. These cues are maximally modified at frequencies related to the delay between direct and reflected signals, and therefore to the spatial location of the sound source. Thus, natural binaural cues differ from anechoic cues. In particular, the range of interaural time differences is substantially larger than in anechoic environments. Reflections may potentially contribute binaural cues to distance and polar angle when the properties of the reflecting surface are known and stable, for example, for reflections on the ground.  相似文献   

17.
For human listeners, cues for vertical-plane localization are provided by direction-dependent pinna filtering. This study quantified listeners' weighting of the spectral cues from each ear as a function of stimulus lateral angle, interaural time difference (ITD), and interaural level difference (ILD). Subjects indicated the apparent position of headphone-presented noise bursts synthesized in virtual auditory space. The synthesis filters for the two ears either corresponded to the same location or to two different locations separated vertically by 20 deg. Weighting of each ear's spectral information was determined by a multiple regression between the elevations to which each ear's spectrum corresponded and the vertical component of listeners' responses. The apparent horizontal source location was controlled either by choosing synthesis filters corresponding to locations on or 30 deg left or right of the median plane or by attenuating or delaying the signal at one ear. For broadband stimuli, spectral weighting and apparent lateral angle were determined primarily by ITD. Only for high-pass stimuli were weighting and lateral angle determined primarily by ILD. The results suggest that the weighting of monaural spectral cues and the perceived lateral angle of a sound source depend similarly on ITD, ILD, and stimulus spectral range.  相似文献   

18.
Resolution of front-back confusion in virtual acoustic imaging systems   总被引:4,自引:0,他引:4  
A geometric model of the scattering of sound by the human head is used to generate a model of localization cues based on interaural time delay (ITD). The ITD is calculated in terms of the interaural cross-correlation function (IACC) for sources placed at a series of azimuthal angles in the horizontal plane. This model is used to simulate the pressures generated at the ears of a listener due to real sources and due to a two-channel and a four-channel virtual source imaging system. Results are presented in each case for the variation of ITD with head rotation. The simulations predict that the rate of change of the ITD with head rotation produced by a real source and replicated by the four-channel virtual source imaging system, cannot be replicated by the two-channel system. These changes to the ITD provide cues which allow resolution of front-back confusion. The results of subjective experiments are also presented for the three cases modeled. These results strongly support the findings from the modeling work indicating that, for the systems described here, front-back confusion is resolved through changes to the ITD arising from head motion.  相似文献   

19.
An experiment was designed to determine whether normally sighted human subjects would be able to adapt to the handicapping effects of sudden deprivation of visual cues on horizontal plane sound localization. Two groups of sighted normal-hearing young adults participated. One group was allowed the benefit of sight. The other group was blindfolded. Measurements of accuracy and the time to respond were made daily over the course of five consecutive days, in a semi-reverberant sound proof booth that modeled listening in a small office. Sound localization was assessed using an array of eight speakers that surrounded the subject in space. Each day, one block of 120 trials was presented for each of three stimuli, two one-third octave noise bands, centred at 0.5 and 4 kHz, and broadband noise, to assess the utilization of interaural temporal difference cues, interaural level difference cues and binaural and spectral cues in combination. Blindfolded subjects were relatively less accurate than sighted subjects. Both groups showed gains with practice, the blindfolded group to a greater degree, largely due to improvements in the use of spectral cues. The blindfolded group took longer to respond than the sighted group, but showed greater decrements in response time with practice.  相似文献   

20.
The ability to localize a click train in the frontal-horizontal plane was measured in quiet and in the presence of a white-noise masker. The experiment tested the effects of signal frequency, signal-to-noise ratio (S/N), and masker location. Clicks were low-pass filtered at 11 kHz in the broadband condition, low-pass filtered at 1.6 kHz in the low-pass condition, and bandpass filtered between 1.6 and 11 kHz in the high-pass condition. The masker was presented at either -90, 0, or +90 deg azimuth. Six signal-to-noise ratios were used, ranging from -9 to +18 dB. Results obtained with four normal-hearing listeners show that (1) for all masker locations and filtering conditions, localization accuracy remains unaffected by noise until 0-6 dB S/N and decreases at more adverse signal-to-noise ratios, (2) for all filtering conditions and at low signal-to-noise ratios, the effect of noise is greater when noise is presented at +/- 90 deg azimuth than at 0 deg azimuth, (3) the effect of noise is similar for all filtering conditions when noise is presented at 0 deg azimuth, and (4) when noise is presented at +/- 90 deg azimuth, the effect of noise is similar for the broadband and high-pass conditions, but greater for the low-pass condition. These results suggest that the low- and high-frequency cues used to localize sounds are equally affected when noise is presented at 0 deg azimuth. However, low-frequency cues are less resistant to noise than high-frequency cues when noise is presented at +/- 90 deg azimuth. When both low- and high-frequency cues are available, listeners base their decision on the cues providing the most accurate estimation of the direction of the sound source (high-frequency cues). Parallel measures of click detectability suggest that the poorer localization accuracy observed when noise is at +/- 90 deg azimuth may be caused by a reduction in the detectability of the signal at the ear ipsilateral to the noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号