首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral tertiary alcohols and their esters represent important flavor compounds and are useful building blocks. Unfortunately, they are accepted by only a few lipases/esterases as substrates and enantioselectivity is usually very low. We report here a highly enantioselective transesterification of the tertiary alcohol 2-phenylbut-3-yn-2-ol using lipase A from Candida antarctica (CAL-A). Under optimized conditions, the corresponding acetate was obtained with 94%ee at 35% conversion equivalent to an enantioselectivity factor of E=65. In contrast, enantioselective hydrolysis of the racemic acetate was not feasible as this is very prone to autohydrolysis.  相似文献   

2.
Implantation of artificial intraocular lenses into the eye during ophthalmic surgical procedures ensures an unliving surface on which bacterial pathogens may attach and form biofilms. Despite antibiotic treatment bacteria growing in biofilms might cause inflammation and serious complications. In this study the adhesive ability of 7 Staphylococcus aureus and 11 coagulase-negative Staphylococcus (CNS) strains to the surface of acrylic intraocular lenses had been examined by the ultrasonic method. In untreated cases adhesion of the S. aureus and CNS strains did not differ significantly. We could not demonstrate significant differences between the adhesive ability of the standard strains and the clinical isolates. In this study a single – 60 min long – antibiotic (ciprofloxacin and tobramycin) treatment had been applied, that correlate well with the single or intermittant antibiotic prophylaxis of patients. Ciprofloxacin administration was able to reduce significantly the number of attached cells on the surface of acrylic lenses both in the case of S. aureus and CNS strains. Dependence of the effect from concentration could also be demonstrated. Tobramycin treatment was able to inhibit significantly the attachment of S. aureus cells. Despite the debate on antibiotic prophylaxis we presented in our experiments that a single antibiotic administration can decrease the attachment of bacterial cells to the surface of acrylic intraocular lenses, and might be effective in the prevention of postoperative endophthalmitis, that is a rare but serious complication of ophthalmic surgery.  相似文献   

3.
TiO2/羟基磷灰石的结构及其光催化降解醛类的性能   总被引:3,自引:0,他引:3  
胡茂从  钟顺和 《催化学报》2006,27(12):1144-1148
 采用水热合成和离子交换法相结合制备了不同Ti/(Ti+Ca)摩尔配比的羟基磷灰石负载二氧化钛(TiO2/HAP)光催化剂. 用X射线衍射、拉曼光谱、红外光谱、紫外-可见漫反射光谱和微型连续光反应技术研究了催化剂的晶体结构、表面构造、光响应性能以及光催化降解甲醛和乙醛的性能. 结果表明, Ti/(Ti+Ca)配比是影响TiO2/HAP晶体结构、表面构造和光响应性能的重要因素, Ti/(Ti+Ca)摩尔比为 0.2时, TiO2/HAP为锐钛矿型TiO2和HAP的混合相, TiO2与HAP之间形成了 Ti-O-P 键,二者得到了有效的复合. 复合材料相对于TiO2在漫反射光谱吸光带边上有明显的红移,扩展了材料的吸光域. 在合适的条件下, TiO2/HAP光催化降解甲醛和乙醛的转化率分别达89.2%和82.7%, 矿化率达92.1%和75.2%.  相似文献   

4.
Deposition of the oral bacteriumStreptococcus sobrinus HG977 onto glass (water contact angle 0°) and onto FEP-Teflon (fluoroethylenepropylene; water contact angle 110°) was studied in a parallel-plate flow chamber in the presence and absence of polyclonal antibodies (pAb) and monoclonal antibodies (mAbs) adsorbed onto the cells. The zeta potentials of the bacteria ranged from −7.1 to −8.5 mV at pH 6.8 and were not affected by the presence of pAb or mAbs. Hydrophobicity (by water contact angles) increased from 30° (no antibodies) to 88° in the presence of pAb adsorbed onto the bacterial cell surface. The untreatedS. sobrinus had a greater tendency to adhere to glass (44.5 × 106 cm−2) than to FEP-Teflon (18.3 × 106 cm−2), in accordance with thermodynamic modelling. After preincubation ofS. sobrinus with pAb, its clear preference for adhesion to glass disappeared as expected from its increased hydrophobicity. Although forS. sobrinus preincubated with OMVU10 no difference was found in hydrophobicity in comparison to the untreated bacteria, the number of bacteria adhering to glass decreased to 10.2 ¢ 106 cm−2. Formation of bacterial aggregates was found whenS. sobrinus, preincubated with pAb or OMVU10, adhered to glass and FEP. This was also observed when untreated bacteria adhered to glass coated with OMVU10, or to FEP coaled with OMVU10 or pAb. Adhesion in these experiments is therefore thought to occur via near-neighbour collection induced by the presence of pAb or mAbs. Low numbers of bacteria were removed from glass after draining the flow cell, whereas high numbers of untreated bacteria and bacteria preincubated with OMVU10 were removed from FEP.S. sobrinus cells preincubated with pAb were not removed but piled up. It was concluded that the adhesion of untreatedS. sobrinus andS. sobrinus preincubated with pAb is in accordance with thermodynamic modelling, based on the overall wettability of the cell surfaces, whereas the adhesion ofS. sobrinus preincubated with OMVU10 may be through localized interactions, not expressed in overall surface properties.  相似文献   

5.
For further investigation of the kinetic resolutions in transesterification reactions with the highly enantioselective Candida antarctica lipase B, an easy to study model reaction with one typical substrate, the Douglas Fir Beetle pheromone 3-methyl-2-cyclohexen-1-ol (Seudenol), was developed. The influence of the nature of the solvent and thermodynamic water activity was studied. Initial rates showed constant or progressively increasing values with increasing water activity. Enantioselectivity depended on the choice of solvent and descended in most cases with increasing water activity. No general correlations of enantioselectivity or activity with physicochemical constants of the solvent were found. However, at a water activity of 0.11 a tendency toward optimum hydrophobicity (i.elog P ≈ for enantioselectivity was observed. Enantiomeric ratios were in the range 8–32.  相似文献   

6.
The influence of hydroxyapatite (HAP) addition on the rate and mechanism of lactide-co-glycolide copolymer (PGLA) degradation after implantation (in vivo study) was analyzed and compared with the process taking place during in vitro studies. Structural and phase changes of poly(lactide-co-glycolide) and its composite with hydroxyapatite were determined using IR and NMR spectroscopy.Degradation of PGLA and PGLA + HAP composite in biological environment proceeds faster than under in vitro condition. Concentration of glycolidyl units in the copolymer chain decreases and that of lactidyl units increases during in vivo degradation both, in PGLA and in PGLA + HAP composite. However, in the case of the composite the decrease of glycolidyl units concentration is slower and after 6 weeks of degradation the contents of lactidyl and glycolidyl units remain stable. On the other hand, PGLA + HAP composite degrades faster than pure PGLA. The addition of HAP nanoparticles distinctly accelerates degradation of PGLA copolymer which is probably connected with the increase of hydrophilicity of the composite and inhibition of semi-crystalline lactidyl domains formation during the degradation process. Observation of the bone tissue after implantation of PGLA + HAP allows to conclude that the degradation of the composite occurs simultaneously with the implant replacement by the bone cells.  相似文献   

7.
Grafting of oleylphosphate (OP) molecules to the surface of calcium hydroxyapatite particles (HAP) was carried out by a coprecipitation method with a Ca(OH)2–H3PO4 system in the presence of disodium oleylphosphate (DSOP). All the particles exhibited a single-crystal nature with rod-like shape and were elongated along c-axis from 36 to 122 nm in particle length with an increase in the concentration of DSOP. It was suggested that 084% of the phosphate ions exposed on the ac or bc faces of the HAP particles are exchanged with phosphate ions of DSOP molecules directing oleyl groups outward. The hydrophobicity of OP-grafted HAP particles was enhanced with an increase in the DSOP concentration. This high surface hydrophobicity was further confirmed by water adsorption experiments. The materials with the surface oleyl groups adsorbed much less water than the HAP particles produced without DSOP.  相似文献   

8.
A novel nanocomposite involving nano‐hydroxyapatite/chitosan/polyethylene glycol (n‐HAP/CS/PEG) has been successfully synthesized via co‐precipitation approach at room temperature. The purpose to synthesize such nanocomposite is to search for an ideal analogue which may mimick the composition of natural bone for bone tissue engineering with respect to suitable biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n‐HAP/CS and n‐HAP/CS/PEG scaffolds indicated significant intermolecular interaction between the various components of both the nanocomposites. The results of XRD, TEM and TGA/DTA suggested that the crystallinity and thermal stability of the n‐HAP/CS/PEG scaffold have decreased and increased respectively, relative to n‐HAP/CS scaffold. The comparison of SEM images of both the scaffolds indicated that the incorporation of PEG influenced the surface morphology while a better in‐vitro bioactivity has been observed in n‐HAP/CS/PEG than in n‐HAP/CS based on SBF study, referring a greater possibility for making direct bond to living bone if implanted. Furthermore, MTT assay revealed superior non‐toxic nature of n‐HAP/CS/PEG to murine fibroblast L929 cells as compared to n‐HAP/CS. The comparative swelling studies of n‐HAP/CS/PEG and n‐HAP/CS scaffolds revealed a better swelling rate for n‐HAP/CS/PEG. Also n‐HAP/CS/PEG showed higher mechanical strength relative to n‐HAP/CS supportive of bone tissue ingrowths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Long-term viability of microorganisms has seldom been reported but is important from the technological and scientific point of view. In this work we show that Saccharomyces cerevisiae, a well known biocatalyst, remains viable and active in fermentation experiments for up to 3 years, in the absence of nutrients, when supported on chrysotile fibers. This long-term viability is ascribed to a latency state which the cells enter after about 4 months storage, induced by entrapment of the cells within the chrysotile fibers. Adhered chrysotile fibers do not penetrate the cell. TEM results show that the fibers are adhered only to the external cellular wall layer, and that no damage is caused to the cell wall structure. No fibers were ever found inside the cells. The entrapping fibers could be observed as a distinctive, well preserved silk nest in preparations in which the cells were not fixed chemically. No degradation of the chrysotile adhered fibers was observed. The entrapment is ascribed to the chrysotile flexibility and the size of the cells, which maximize adhesion by electrostatic and van der Waals interactions between the fibers and the cell surface polysaccharides.  相似文献   

10.
The adhesion of filamentous microbial cells such as Trichoderma reesei was studied by using carriers covered with polymers which were prepared by the radiation polymerization of ionic monomers. The weight of the cells adhering to the carriers increased with increasing cationic monomer content, indicating that the surface of the polymers prepared from cationic and hydrophobic monomers is suitable for the adhesion of the cells. The production of cellulase in the cells adhered to polymers from cationic monomers was higher than that in cells adhered to polymers prepared from anionic monomers. The growth of the cells adhered to the surfaces of the polymers was affected by the hydrophilicity of the polymers.  相似文献   

11.
Kinetic resolutions of a number of β-hydroxy selenides promoted by enzymes were performed using PPL (free Porcine pancreatic lipase), PSL (Amano PS—free Pseudomonas sp. lipase) and CALB (NOVOZYM 435®—immobilized Candida Antarctica lipase type B) with (RS)-1-phenylselanyl-propan-2-ol. CALB gave the best results and provided both (R)- and (S)-enantiomers in high enantiomeric purity. A comparative study of the effect of temperature, solvent, enzyme immobilization and the structure of the substrates on the resolution is presented.  相似文献   

12.
Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C. albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C. albicans was strongly repressed when the temperature was raised from 30 to 38 °C while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation.  相似文献   

13.
The long-range equilibrium and viscous interaction forces between a single Candida albicans cell and a flat surface have been measured using a gradient optical trap as a force transducer and evanescent wave light scattering (EWLS) to determine the separation distance. In this technique the trapped cell is probed against the surface by moving the focal point of the optical trap, the equilibrium force is determined by the deflection of the most probable cell position from the trap center, and the viscous forces are determined from the relaxation time of the Brownian fluctuations of the cell in the trap. At low electrolyte concentrations (0.5 mM NaCl) where double layer repulsion was anticipated to be the dominant interaction, equilibrium force–distance profiles for yeast cells and similarly sized polystyrene microspheres on glass surfaces both showed good agreement with predictions of DLVO theory. Also, viscous drag profiles at larger separation distances where interaction forces were small agreed well with Stokes flow predictions. These results appear to validate the technique for use with spherical yeast cells and other bioparticles of similar size. This force measurement methodology therefore provides a complementary alternative to atomic force microscopy for direct force measurement with much greater sensitivity for studying interaction between yeast and surfaces.  相似文献   

14.
Enantioselective bioreduction of alkyl 2-oxo-4-arylbutanoates and 2-oxo-4-arylbut-3-enoates mediated by Candida parapsilosis ATCC 7330 resulted in the formation of the corresponding (S)-2-hydroxy compounds in high enantiomeric excesses (93–99%) and good isolated yields (58–71%). The absolute configuration of enantiomerically pure ethyl 2-hydroxy-4-(p-methylphenyl)but-3-enoate obtained by the reduction of the corresponding keto ester was assigned by 1H NMR using Mosher’s method.  相似文献   

15.
Phospho‐L‐glutamic acid was successfully prepared by the phosphorylation of glutamic acid, and its adsorption on synthetic hydroxyapatite (HAP) was studied together with glutamic. The adsorption behaviors of both adsorbates were adequately described by a Langmuirian model. From the comparison between two different adsorbates, the results of the investigation indicated that the phosphate group in phospho‐L‐glutamic acid can greatly enhanced the adsorption affinity for HAP, the improvement of which was achieved through replacing the same group on the surface of HAP and interacting with the surface calcium ion of HAP by electrostatic attraction. The results obtained laid the solid foundation for further research on the regulating function of phosphorylated amino acids with hydroxyapatite biological composites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Chemical modifications of mineral surfaces were performed in order to gain insight into what surface properties are decisive of the accumulation of dental plaque. A non-charged, hydrophilic surface was made by two consecutive plasma polymerizations, firstly with allyl alcohol, secondly with acrylic acid, followed by adsorption of a poly(ethylene glycol)-poly(ethylene imine) adduct. A strongly hydrophobic surface was obtained by plasma polymerization of hexamethyldisiloxane. Ellipsometry was used to monitor protein interaction with the surfaces. The hydrophilic surface gave very little adsorption of both a model protein, IgG, and of saliva proteins. The hydrophobic surface, on the other hand, adsorbed high amounts of both types of proteins. In vitro adhesion of an oral bacterium,S. mutans, as well as in vivo studies, gave the opposite result, the hydrophobic surface giving less adhesion and less plaque accumulation than the hydrophilic surface. A tentative explanation of this behavior is that the saliva proteins that bind to the hydrophobic surface adsorb in an unnatural conformation which does not favor bacteria adherence.  相似文献   

17.
The stereoselective acylation of meso-tetrahydropyrans 6 and 7 by enol esters (vinyl acetate or isopropenyl acetate) in the presence of Candida antarctica lipase in organic media gave the corresponding (2R,4S,6S)-monoesters 10 and 11 in high enantiomeric purity. The hydrolysis of the corresponding diacetate derivatives 8 and 9 in the presence of the same enzyme provided the opposite enantiomers, (2S,4R,6R)-monoesters 10 and 11.  相似文献   

18.
The physiological state of an examined Pseudomonas fluorescens strain had a significant impact on its adhesion to glass surfaces and transport through glass-bead columns. In both batch and column studies collision efficiencies, , for exponential phase cells were much larger (≈2–3) than for stationary or decay phase cells (≈0.5–0.7). Centrifugation of exponential phase cells substantially reduced collision efficiencies (≈0.8). Over the examined range (0.02–0.2 M), ionic strength had no impact on cell attachment. The Lewis acid/base (A/B) character of the cell surface varied with physiological states: exponential phase cells exhibited larger values of the electron–donor parameter of the polar surface tension component, γS, than stationary or decay phase cells, resulting in larger calculated cell hydrophilicities. A reduction in exponential phase cell ζ-potential was observed upon centrifugation. Traditional Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy profiles (between cells and glass surfaces) indicated energy maxima of the order of 90–130kT, and secondary energy minima of less than 10kT. Extended DLVO modeling predicted infinite energy barriers attributable to repulsive A/B interactions, and similar magnitude secondary energy minima. A pseudo-chemical kinetic approach was used to calculate activation energies of adhesion from experimental collision efficiencies. Collision efficiencies were also predicted from a diffusion-governed mass transport model incorporating interacting force fields. Predicted energy barriers underestimated cell collision efficiencies, suggesting that secondary energy minimum interactions governed initial attachment of cells. The partial reversibility of adhesion upon ionic strength reduction supported the secondary minimum interaction hypothesis.  相似文献   

19.
The effect of small amounts of iron(III) ions on the morphology, phase composition, and structure of the products of the hydroxyapatite (HAP) synthesis has been studied by electron microscopy, X-ray powder diffraction, and Mossbauer spectroscopy methods. It has been demonstrated that the introduction of dopant iron(III) ions into the reaction mixture at different stages of HAP formation makes it possible to control crystal growth, morphology, and phase composition. The iron ions are not incorporated into the HAP crystal structure; rather, they form their proper nanophase, as well as adsorption clusters on the HAP surface.  相似文献   

20.
An approach to organic-inorganic interfacial structure at the atomic level is a great challenge in the studies of biomineralization. We demonstrate that atomic force microscopy (AFM) is powerful tool to discover the biomineral interface in detail. By using a model system of (100) hydroxyapatite (HAP) face and citrate, it reveals experimentally that only a side carboxylate and a surface calcium ion are involved in the binding effect during the citrate adsorption, which is against the previous understandings by using Langmuir adsorption and computer simulation. Furthermore, the adsorbed citrate molecules can use their free carboxylate and hydroxyl groups to be self-assembled on the HAP surface. AFM examination also finds that the presence of citrate molecules on the HAP crystal faces can enhance the adhesion force of the HAP surface. We suggest that the established AFM method can be used for a precise and direct understanding of biointerfaces at the atomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号