首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

2.
<正>Comparison in electron transfer(ET) processes from decamethyferrocene(DMFe) in nitrobenzene(NB) to ferric ion in aqueous phase was investigated for the first time by the scanning electrochemical microscopy(SECM).As compared with the system of Fe(CN)_6~(3-)-DMFe,the ET rate obtained from Fe~(3+)-DMFe was lower in spite of larger driving force,which may arise from the effect of reorganization energy.Otherwise,the effect of common ion on rate constants was also probed and results suggested additional complexity of the ET mechanism between Fe(CN)_6~(3-) and DMFe.  相似文献   

3.
4.
Sherburn A  Plattt M  Arrigan DW  Boag NM  Dryfe RA 《The Analyst》2003,128(9):1187-1192
Transfer of silver ions across the water/1,2-dichloroethane interface was studied by cyclic voltammetry (CV). In the absence of added neutral ionophore, Ag+ transferred across the interface when the organic phase contained either tetraphenylborate or tetrakis(4-chloro)phenylborate anions, but this transfer was not possible in the presence of organic phase hexafluorophosphate or perchlorate anions. The ion transfer processes observed were independent of the nature of the organic phase cation. The CV in the presence of tetraphenylborate exhibited a shape consistent with an ion transfer followed by chemical reaction; the rate constant for the following chemical reaction was 0.016 s(-1). In the presence of tetrakis(4-chloro)phenylborate, a return peak equivalent in magnitude to the forward peak was observed, indicative of a simple ion transfer reaction uncomplicated by accompanying chemical reactions. The selectivity of the transfer was assessed with respect to other metal cations: no transfers for copper, cadmium, lead, bismuth, cobalt, nickel, palladium or zinc were observed. The selectivity of the transfer suggests this can form the basis of a selective voltammetric methodology for the determination of silver ions.  相似文献   

5.
Molecular partitioning and electron-transfer kinetics have been studied at the ionic liquid/water (IL/water) interface by scanning electrochemical microscopy (SECM). The ionic liquid C8mimC1C1N is immiscible with water and forms a nonpolarizable interface when in contact with it. Partitioning of ferrocene (Fc) across the IL/water interface was studied by SECM and found to be kinetically fast with a partition coefficient CIL/CW of 2400:1. The partition coefficient value was measured by SECM under quasi-steady-state conditions without waiting for complete solute equilibration. To investigate the kinetics of the electron transfer (ET) between aqueous ferricyanide and Fc dissolved in IL, a new approach to the analysis of the SECM current-distance curves was developed to separate the contributions of Fc partitioning and the ET reaction to the tip current. Several combinations of different aqueous and nonaqueous redox species were investigated; however, only the Fc/Fe(CN)63- system behaved according to the Butler-Volmer formalism over the entire accessible potential range.  相似文献   

6.
The kinetics of electron transfer between individual gold nanocrystals and a solution redox species is quantified. The observed rate is dependent on the extent of electronic coupling between nanocrystals in the monolayer indicating the effect of Coulomb blockade on electrochemical kinetics.  相似文献   

7.
Proven electrochemical approaches were applied to study heterogeneous electron transfer (ET) between selected redox couples and gold electrodes modified with alkanethiol self-assembled monolayers (SAMs), using the room-temperature ionic liquid (RTIL) [bmim][NTf2] as reaction medium; ferrocene as freely diffusing redox probe in the RTIL was tested for ET through both thin (butanethiol) and thick (dodecanethiol) assemblages at pressures up to 150 MPa; well behaved kinetic patterns and reproducibility of data were demonstrated for ET within the unique Au/SAM/RTIL arrays.  相似文献   

8.
In ionic liquids (ILs), the electric double layer (EDL) is where heterogeneous electron transfer (ET) occurs. Nevertheless, the relationship between the EDL structure and its kinetics has been rarely studied, especially for ET taking place in the inner Helmholtz plane (IHP). This is largely because of the lack of an appropriate model system for experiments. In this work, we determined the reorganization energy (λ) of Br2 reduction in a redox-active IL 1-ethyl-1-methylpyrrolidinium polybromide (MEPBr2n+1) based on the Marcus–Hush–Chidsey model. Exceptionally fast mass transport of Br2 in MEPBr2n+1 allows voltammograms to be obtained in which the current plateau is regulated by electron-transfer kinetics. This enables investigation of the microscopic environment in the IHP of the IL affecting electrocatalytic reactions through reorganization energy. As a demonstration, TiO2-modified Pt was employed to show pH-dependent reorganization energy, which suggests the switch of major ions at the IHP as a function of surface charges of electrodes.

Ultrafast transport of Br2 in a polybromide redox-active ionic liquid allows electron transfer-limited voltammograms of Br2 reduction. The reorganization energy at the inner-Helmholtz plane can be determined based on the Marcus–Hush–Chidsey model.  相似文献   

9.
Ultrafast excited-state electron transfer has been monitored at the liquid/liquid interface for the first time. Second harmonic generation (SHG) pump/probe measurements monitored the electron transfer (ET) occurring between photoexcited coumarin 314 (C314) acceptor and dimethylaniline (DMA) donor molecules. In the treatment of this problem, translational diffusion of solute molecules can be neglected since the donor DMA is one of the liquid phases of the interface. The dynamics of excited-state C314 at early times are characterized by two components with exponential time constants of 362 +/- 60 fs and 14 +/- 2 ps. The 362 fs decay is attributed to the solvation of the excited-state C314, and the 14 ps to the ET from donor to acceptor. We are able to provide conclusive evidence that the 14 ps component is the ET step by monitoring the formation of the radical DMA cation. The formation time is 16 ps in agreement with the 14 ps decay of C314*. The recombination dynamics of DMA+ plus C314- was determined to be 163 ps from the observation of the DMA+ SHG signal.  相似文献   

10.
New approaches have been developed for measuring the rates of electron transfer (ET) across self-assembled molecular monolayers by scanning electrochemical microscopy (SECM). The developed models can be used to independently measure the rates of ET mediated by monolayer-attached redox moieties and direct ET through the film as well as the rate of a bimolecular ET reaction between the attached and dissolved redox species. By using a high concentration of redox mediator in solution, very fast heterogeneous (10(8) s(-1)) and bimolecular (10(11) mol(-1) cm(3) s(-1)) ET rate constants can be measured. The ET rate constants measured for ferrocene/alkanethiol on gold were in agreement with previously published data. The rates of bimolecular heterogeneous electron transfer between the monolayer-bound ferrocene and water-soluble redox species were measured. SECM was also used to measure the rate of ET through nonelectroactive alkanethiol molecules between substrate gold electrodes and a redox probe (Ru(NH(3))(6)(3+)) freely diffusing in the solution, yielding a tunneling decay constant, beta, of 1.0 per methylene group.  相似文献   

11.
A theory of fully adiabatic dissociative electrochemical processes of the electron transfer that are induced by scanning tunneling microscopy is constructed. Adiabatic free energy surfaces are calculated and properties of their symmetry are examined under various conditions. Diagrams of kinetic regimes, which characterize possible kinetic processes, which may proceed in the system under consideration, are constructed in the space of model parameters. Dependence of activation free energy on the bias voltage, overvoltage, physical properties of a molecule, and intensity of interaction of a molecule with an electrode and the tip of the scanning tunneling microscope is explored.  相似文献   

12.
Fluctuation analysis was utilized to determine the TEA ion transfer kinetics across the water/1,2-dichloroethane interface. The obtained data were compared with those derived from electrochemical impedance spectroscopy experiments using the same electrolytic cell. The apparent standard rate constants ks determined by these two techniques have a similar value. The average value ks = 0.37 cm s 1 is comparable with the previously reported value ks = 0.2 cm s 1. The experimental approach utilizing a thick wall glass micro-capillary to fix the interface exhibits a very small stray capacitance value, proving this system to be suitable for determining the kinetics of the fast ion transfer across a liquid/liquid interface. Application of a method employing a small perturbation signal prevents polarization of the inner capillary surface by current flowing through the cell. The induced polarization of the capillary can affect ion concentration at the interface due to electroosmosis and thus make the kinetic data evaluation difficult or erroneous.  相似文献   

13.
Scanning electrochemical microscopy and scanning electron microscopy were employed to correlate the surface microstructures with surface reactivity of commercially pure zirconium. It was found that heightened reactivity was associated with iron impurities lying beneath the oxide surface. This could result in failure of nuclear reactor components fabricated using zirconium alloys due to hydrogen ingress and corrosion. COMSOL multiphysics software was used to quantify the electrochemical kinetic constants associated with the differences in surface reactivity.  相似文献   

14.
A novel method of Fourier transformed square-wave voltammetry (FT-SWV) in combination with thin-film modified electrode was employed to investigate the kinetics of anion transfer across the liquid/liquid interface using a conventional three-electrode arrangement. Other than traditional SWV in which currents are sampled only at the end of each pulse, FT-SWV continuously collects the current response and then transforms it into frequency domain. Even harmonic frequencies, which are derived from the faradaic current response, will emerge in the power spectrum. The profile of the even harmonic power spectrum is parabolic and shows a maximum at a certain frequency. The maximum and the corresponding frequency are equivalent to the well-known “quasireversible maximum” and “critical frequency” (fmax) in traditional SWV, respectively. The rate constant and ion transfer coefficient α can be estimated by the obtained fmax. Compared with traditional SWV, FT-SWV is much simpler and faster in ion transfer kinetics estimation.  相似文献   

15.
16.
A new numerical model is developed for the scanning electrochemical microscopy (SECM) feedback mode for reversible electron transfer (ET) processes at the interface between two immiscible electrolyte solutions (ITIES). Results from this model were compared with data obtained using an earlier SECM feedback model in which the back reaction was not considered, to identify when the latter will be important. The dependence of the ET rate constant for the oxidation of 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ) in 1,2-dichloroethane (DCE) by aqueous ferricyanide on the interfacial potential drop (Δwoφ) was studied using SECM. The Δwoφ value was varied by changing the concentration of NaClO4 in the aqueous phase while a fixed concentration of organic electrolyte, tetra-n-hexylammonium perchlorate, was used in the DCE phase. The results obtained were compared to earlier published studies on the forward reaction between TCNQ in DCE and aqueous ferrocyanide. Both the forward and back ET rate constants were found to depend strongly on the interfacial potential drop, with measured ET coefficients in the region of 0.5–0.6. A similar ET rate constant was observed at zero driving force for both the forward and back reactions. These experimental results suggest that the Butler–Volmer model applies to ET at the ITIES, when the driving force for the reaction is low, and under conditions of relatively high ionic strength in both the aqueous and organic phases.  相似文献   

17.
Different pathways towards the generation and detection of a single metal nanoparticle (MNP) on a conductive carbon support for testing as an electrocatalyst are described. Various approaches were investigated including interparticle distance enhancement, electrochemical and mechanical tip-substrate MNP transfer onto macroscopic surfaces, scanning electrochemical microscopy (SECM)-controlled electrodeposition, and the use of selective binding monolayers on carbon fiber electrodes (CFEs) for solution-phase-selective adsorption. A novel SECM technique for electrodepositing MNPs on CFE tips immersed 100-200 nm below the electrolyte level was developed and used to generate single Pt and Ni nanoparticles. Following their generation, we demonstrate electrocatalytic detection of Fe3+ on individual Pt particles with the CFE in a Fe3+/H2SO4 solution. We also describe an approach of attaching MNPs to CFEs by controlling the composition of monolayers bonded to the CFE. By employing a monolayer with a low ratio of binding (e.g., 4-aminopyridine) to nonbinding molecules (e.g., aniline) and controlling the position of the CFE in a colloidal Pt solution with a SECM, we attached a single 15 nm radius Pt nanoparticle to the CFE. Such chemisorbed Pt particles exhibited a stronger adhesion on surface-modified CFEs and better mechanical stability during proton reduction than MNPs electrodeposited directly on the CFE.  相似文献   

18.
A new approach to the voltammetric investigation of facilitated ion transfer processes is reported. The technique uses a rotating diffusion cell approach to induce laminar flow in the organic phase of a liquid|liquid electrochemical cell. The interface between two immiscible electrolyte solutions (ITIES) was stabilised against rotation with either γ-alumina or a track-etched polyester membrane. The resultant voltammetry is shown to be consistent with the Koutecký–Levich equation enabling kinetic parameters associated with facilitated transfer of sodium by dibenzo-18-crown-6 across the water|1,2-dichloroethane interface to be evaluated. In particular, the use of the more hydrophilic alumina membrane permits the uncertainties regarding the use of the membrane-stabilised ITIES, namely the interfacial position, to be eliminated.  相似文献   

19.
Scanning electrochemical microscopy was used to probe the influence of a driving force on the heterogeneous electron transfer (ET) processes at the externally polarized water/1,2-dichloroethane interface. Being a part of the driving force, the Galvani potential difference at the interface, Deltaowphi, can be quantitatively controlled in a wide range, allowing the precise measurements of the rate constants of the ET reactions. Two opposite systems were chosen in this work. One was 5,10,15,20-tetraphenyl 21H,23H-porphyrin zinc (ZnPor, O)/Fe(CN)64- (W), and the other was TCNQ (O)/Fe(CN)63- (W). For both systems studied, the relations between the rate constant and the Deltaowphi were of parabolic shape; that is, the rate constants increased initially with the Deltaowphi until reaching a maximum and then decreased steadily as the Deltaowphi increased further. This is in accordance with the prediction of the Marcus theory. To our knowledge, this is the first report that the Marcus inverted region can be observed electrochemically at an unmodified liquid/liquid interface with only one redox couple at each phase. The effect of the concentrations of the organic supporting electrolyte has also been discussed in detail.  相似文献   

20.
Scanning electrochemical microscopy (SECM) has been proven to be a valuable technique for the quantitative investigation and surface analysis of a wide range of processes that occur at interfaces. In particular, there is a great deal of interest in studying the kinetics of charge transfer characteristics at the solid/liquid and liquid/liquid interface. This overview outlines recent advances and applications of SECM to the investigation of charge transfer reactions at the solid/liquid interface and liquid/liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号