首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈灵娜  马松山  欧阳芳平  肖金  徐慧 《中国物理 B》2011,20(1):17103-017103
Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.  相似文献   

2.
徐慧  肖金  欧阳方平 《物理学报》2010,59(6):4186-4193
利用第一性原理电子结构计算方法,研究了扶手椅型单壁碳纳米管(SWCNT)的B/N对掺杂效应.研究发现,对于扶手椅型SWCNT两个不同的掺杂位点,B/N对更容易发生在与管轴线成30°角的P1位点上.B/N对的掺杂使得金属性SWCNT能隙打开,且能隙随着B/N对轴向掺杂浓度的升高而逐渐增大.同时,还发现两B/N对掺杂后SWCNT的电子结构敏感地依赖于B/N对在圆周上的相对位置,能隙随着B/N对相对距离的增大而增大.这归结于B/N对的掺入影响了原有的电荷分布,这种影响是局域的 关键词: 单壁碳纳米管 B/N对掺杂 电子结构 第一性原理  相似文献   

3.
利用基于密度泛函理论的第一性原理计算方法,研究了小直径锯齿形单壁碳纳米管(3,0)的硼(B)、磷(P)单个原子掺杂和B/P共掺杂效应.计算了B、P单原子掺杂的形成能、能带结构和电子态密度,分析得出B、P掺杂(3,0)单壁碳纳米管是可行的,并且碳纳米管的导电性没有发生明显改变.本文还计算了在不同掺杂位点,(3,0)金属性碳纳米管的形成能和能带结构,发现B/P共掺杂也是可行的,B和P趋于形成B/P对,并且B/P的掺入使(3,0)金属性碳纳米管的能带打开,由金属性变成半导体性.  相似文献   

4.
硼磷掺杂小直径单壁碳纳米管的第一性原理研究   总被引:2,自引:0,他引:2  
利用基于密度泛函理论的第一性原理计算方法,研究了小直径锯齿形单壁碳纳米管(3,0)的硼(B)、磷(P)单个原子掺杂和B/P共掺杂效应. 计算了B、P单原子掺杂的形成能、能带结构和电子态密度,分析得出B、P掺杂(3,0)单壁碳纳米管是可行的,并且碳纳米管的导电性没有发生明显改变. 本文还计算了在不同掺杂位点,(3,0)金属性碳纳米管的形成能和能带结构,发现B/P共掺杂也是可行的,B和P趋于形成B/P对,并且B/P的掺入使(3,0)金属性碳纳米管的能带打开,由金属性变成半导体性.  相似文献   

5.
Using the first-principles study, we calculate the electronic band structure of metallic carbon nanotubes (MCNTs) with B/N co-doping. We show the formation energies which suggest that the B/N co-doping configuration is the energetically stable structure. We find that the electronic structure properties depend on the doping concentration of MCNTs, as well as the doping position. Energy gap opens rapidly when the symmetry breaking of MCNTs happens. These unconventional doping effects could be used to design novel nanoelectronic devices.  相似文献   

6.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

7.
魏燕  胡慧芳  王志勇  程彩萍  陈南庭  谢能 《物理学报》2011,60(2):27307-027307
运用第一性原理的密度泛函理论,结合非平衡格林函数,研究了氮原子取代掺杂手性单壁(6,3)碳纳米管的电子结构和输运特性.计算结果表明:不同构形和不同数目的氮原子取代掺杂对手性碳管的输运性质有很复杂的影响.研究发现,氮原子掺杂明显改变了碳管的电子结构,使金属型手性碳管的输运性能降低,电流-电压曲线呈非线性变化,而且输运性能随着杂质原子间间距的变化而发生显著改变.在一定条件下,金属型碳管向半导体型转变. 关键词: 手性单壁碳纳米管 氮掺杂 电子结构 输运性能  相似文献   

8.
孔文婕  吕力  张殿琳  潘正伟 《中国物理》2005,14(10):2090-2092
The $1/f$ noise in multiwalled carbon nanotubes bundles has been investigated between the frequency range of 0.1 to 30 Hz. At room temperature the noise spectrum is standard 1/f, and its level is proportional to the square of the bias voltage. With decreasing temperature the noise level also decreases. At 4.2 K the noise level follows a non-monotonic dependence against the bias voltage, showing a peak at a certain bias voltage, meanwhile its frequency dependence also deviates from the 1/f trend. This anomalous behaviour is discussed within the picture of environmental quantum fluctuation of charge transport in the samples.  相似文献   

9.
Arc-produced carbon multi-walled nanotubes (MWNTs) were fluorinated at 420 °C in a flow of diluted F2 gas containing small admixture of HF gas. Fluorinated materials (F-MWNTs) with 10–55 wt.% fluorine content were studied by XPS. It was shown that fluorination begins at the external layers of nanotubes and the reaction front propagates inside the multi-layer particles in concert with structural deterioration of graphene layers. The C2F stoichiometry still allows MWNT wall integrity, similar to known for SWNTs. The fluorine contents in the product can noticeably exceed this higher fluorine limit for tube stability. The position of the F 1s line at 688.2 eV does not depend on the fluorine concentration. Nearly covalent C–F bonds dominate the F-MWNT samples, with a small quantity (2–9%) of ionic bonds also present. Fluorinated carbon tends to spatially separate from non-fluorinated carbon.  相似文献   

10.
李平  邓胜华  张莉  余江应  刘果红 《中国物理 B》2010,19(11):117104-117104
The electronic structures and effective masses of the N mono-doped and Al-N,Ga-N,In-N codoped ZnO system have been calculated by a first-principle method,and comparisons among different doping cases are made.According to the results,the impurity states in the codoping cases are more delocalised compared to the N mono-doping case,which means a better conductive behaviour can be obtained by codoping.Besides,compared to the Al-N and Ga-N codoping cases,the hole effective mass of In-N codoped system is much smaller,indicating the p-type conductivity can be more enhanced by In-N codoping.  相似文献   

11.
唐冬华  薛林  孙立忠  钟建新 《物理学报》2012,61(2):27102-027102
基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg0.75Cd0.25Te 中的掺杂效应.结果表明B在Hg0.75Cd0.25Te中存在着两种主要形态:第一种是在完整的 Hg0.75Cd0.25Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg0.75Cd0.25Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV.这种复合体在Hg0.75Cd0.25Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素.  相似文献   

12.
Vertically aligned multiwalled carbon nanotubes (MWCNTs) were grown on 1‐ and 3‐nm cobalt (Co) films, at various growth times by microwave plasma enhanced chemical vapor deposition technique and their microstructural properties were analyzed with the help of Raman spectra that were obtained from different sources of laser excitation energies (EL: 2.41, 1.96 and 1.58 eV). The variation of D and G band positions in MWCNTs grown on 1‐ and 3‐nm Co films follows a similar behavior, and an anomalous behavior was observed in the EL dependence of the D′‐band wavenumber. In the second‐order spectra, the G′ band varied strongly according to structure with the laser excitation energy (EL). The ID/IG ratio decreased with the increase of EL for all MWCNTs; however, for a fixed EL, the ID/IG dispersion is higher at lower EL. The crystallite sizes were estimated using IDIG and EL. We have shown that, for all MWCNTs, ID/IG ratio is inversely proportional to . Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The thermal conductivity of carbon nanotubes with geometric variations of doped nitrogen is investigated. The phenomenon of thermal rectification shows that the heat transport is preferably in one direction. The asymmetric heat transport of the triangular single-nitrogen-doped carbon nanotubes (SNDCNTs) is larger than that of the parallel various-nitrogen-doped carbon nanotubes (VNDCNTs).  相似文献   

14.
We have investigated the antiferromagnetic edge states in hydrogenated carbon nanotubes by using the density functional theory calculations. The total energy difference between the antiferromagnetic and ferromagnetic states, corresponding to the exchange energy gain stabilizing the antiferromagnetic state, changes by an order of magnitude by controlling the hydrogen adsorption pattern and is nearly independent of the nanotube size for a properly chosen pattern, indicating that the antiferromagnetic edge states in the real size nanotubes can be realized at high temperatures. The coexisting zigzag and bearded edges in the hydrogenated CNTs are believed to enhance the exchange energy gain.  相似文献   

15.
16.
华娟  刘悦林  李恒帅  赵明文  刘向东 《中国物理 B》2016,25(3):36104-036104
We studied the energetic behaviors of interstitial and substitution carbon(C)/nitrogen(N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site(O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from-6.00 e V to-5.00 e V, which is much deeper than that from-5.00 e V to-3.00 e V for the C-p states. Two impurities in bulk vanadium, C–C, C–N, and N–N can be paired up at the two neighboring Osites along the 111 direction and the binding energies of the pairs are 0.227 e V, 0.162 e V, and 0.201 e V, respectively.Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N–vanadium bonding containing a covalent component.  相似文献   

17.
We present an investigation of the nature of single-walled carbon nanotubes (SWCNTs) in a bundle by resonant Raman spectroscopy. The calculation has been done for the three peak positions in radial breathing mode (RBM) spectra obtained by using a laser excitation wavelength (γ) of 633 nm from He-Ne laser on SWNT bundle sample prepared by chemical vapor deposition (CVD) technique using iron catalyst at 800°C. The detailed analysis in the present study is focused on peak positions 162 cm−1, 186 cm−1, and 216 cm−1. The firs step of the analysis is to construct a list of possible (n, m) pairs from the diameters calculated from the RBM peak positions. The parameters of SWNTs studied gives in-depth understanding of many symmetry, resonance and characteristic properties of SWNT bundles. Our results indicate that the contribution of metallic SWNTs in the bundle is small at RBM peak positions 162 cm−1, 186 cm−1 and in agreement with pervious results at peak position 216 cm−1.  相似文献   

18.
The structures of Pt clusters on nitrogen-,boron-,silicon-doped graphenes are theoretically studied using densityfunctional theory.These dopants(nitrogen,boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form.The formation energy of the silicon-graphene system is lower than those of the nitrogen-,boron-doped graphenes,indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene.The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen-and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size.The stable structures of Pt clusters on the doped-graphenes are dimeric,triangle and tetrahedron with the increase of the Pt coverage.Of all the studied structures,the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.  相似文献   

19.
《Current Applied Physics》2015,15(3):163-168
We have investigated the antiferromagnetic edge states in carbon nanotubes with hydrogen line defects by using the density functional theory calculations. As the hydrogen line defects increase, the exchange energy gain stabilizing the antiferromagnetic edge states increases in each graphenic ribbon produced by the line defects, indicating that the antiferromagnetic edge states can be realized at high temperatures regardless of the nanotube size. The exchange energy gain in each ribbon is determined by the ribbon width of the flat ribbon and apparently by the curvature of the curved ribbon. The exchange interaction between the ribbons is seen to be negligibly small even in the presence of a nonmagnetic inter-ribbon interaction that is sensitive to the ribbon width.  相似文献   

20.
The ejection of DNA molecules from carbon nanotubes is reported from interaction energy perspectives by molecular dynamics simulations. The critical ejection energy, which is to be applied to a DNA molecule for a successful ejection from a carbon nanotube, is investigated based on a study on the friction and binding energy between the DNA molecule and the tube. An effective ejection is realized by subjecting a kinetic energy on the DNA molecule that is larger than the solved critical ejection energy. In addition, the relationship between ejection energies and sizes of DNA molecules and carbon nanotubes is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号