首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report an Umpolung strategy of enol ethers to generate oxy‐allyl cation equivalents based on the use of hypervalent iodine reagents. Under mild basic conditions, the addition of nucleophiles to aryloxy‐substituted vinylbenziodoxolone (VBX) reagents, easily available in two steps from silyl alkynes, resulted in the stereoselective formation of substituted aryl enol ethers. The reaction was most efficient with phenols as nucleophiles, but preliminary results were also achieved for C‐ and N‐ nucleophiles. In absence of external nucleophiles, the 2‐iodobenzoate group of the reagent was transferred. The obtained aryl enol ethers could then be transformed into α‐difunctionalized ketones by oxidation. The described “allyl cation”‐like reactivity contrast with the well‐established “vinyl‐cation” behavior of alkenyl iodonium salts.  相似文献   

2.
The palladium- and copper-catalyzed cross-coupling reactions of cyclic silyl ethers with aryl iodides are reported. Silyl ethers 3 were readily prepared by intramolecular silylformylation of homopropargyl silyl ethers 2 under a carbon monoxide atmosphere. The reaction of cyclic silyl ethers 3with various aryl iodides 7 in the presence of [(allyl)PdCl](2), CuI, a hydrosilane, and KF.2H(2)O in DMF at room temperature provided the alpha,beta-unsaturated aldehyde coupling products 8 in high yields. The need for copper in this process suggested that transmetalation from silicon to copper is an important step in the mechanism. Although siloxane 3 and the product 8 are not stable under basic conditions, KF.2H(2)O provided the appropriate balance of reactivity toward silicon and reduced basicity. The addition of a hydrosilane to [(allyl)PdCl](2) was needed to reduce the palladium(II) to the active palladium(0) form.  相似文献   

3.
In spite of the low reactivity of allyl monomers, attempts have been made to prepare polymers by polyrecombination of allyl aromatic compounds. We were encouraged by the stability of allyl radicals [1-8]. The literature on the Claisen rearrangement of polyfunctional allyl aryl ethers contains some observations of the formation of tarry masses and resinification of polyfunctional aryl ethers. Details of the polymerization and the possible structures were not studied. We felt it interesting to synthesize this new monomer, 2-methyallyl-p-cresol, by the rearrangement, and to study in detail the polymerization and characterization of the polymer.  相似文献   

4.
We report an Umpolung strategy of enol ethers to generate oxy-allyl cation equivalents based on the use of hypervalent iodine reagents. Under mild basic conditions, the addition of nucleophiles to aryloxy-substituted vinylbenziodoxolone (VBX) reagents, easily available in two steps from silyl alkynes, resulted in the stereoselective formation of substituted aryl enol ethers. The reaction was most efficient with phenols as nucleophiles, but preliminary results were also achieved for C- and N- nucleophiles. In absence of external nucleophiles, the 2-iodobenzoate group of the reagent was transferred. The obtained aryl enol ethers could then be transformed into α-difunctionalized ketones by oxidation. The described “allyl cation”-like reactivity contrast with the well-established “vinyl-cation” behavior of alkenyl iodonium salts.  相似文献   

5.
Theoretical calculations and the isomeric product composition for a series of eight meta-substituted allyl aryl ethers confirm the reliability of a new (1)H NMR methodology used to predict aromatic Claisen regioselectivity from ground-state conformational preference of the reactant allyloxy group. Frontier HOMO-LUMO intramolecular orbital interactions, a classical approach in predicting reactivity and selectivity for Claisen rearrangements of allyl vinyl ethers, is shown to fail to mimic transition-state orbital interactions for aromatic Claisen rearrangements of meta-substituted allyl aryl ethers. B3LYP/6-31G(d,p) calculations on reactants and transition states are shown, however, to correctly predict the outcome of such aromatic Claisen rearrangements from either the preferential reactant ground-state conformation (theoretical predictions that agree with the NMR measurements) or the less energetic transition state, or both.  相似文献   

6.
A new and easy method for the diastereoselective synthesis of 3-functionalized 2,3-dihydrobenzofuran derivatives from allyl 2-bromoaryl ethers is described. The key step of this transformation involves an intramolecular carbolithiation reaction of allyl 2-lithioaryl ethers. The substituents in both the allyl and the aryl moieties play an important and decisive role in stopping the reaction at the benzofuran thus avoiding a gamma-elimination reaction. Finally, this process is amenable to the synthesis of enantiomerically enriched compounds by using (-)-sparteine as a chiral inductor.  相似文献   

7.
Palladium-catalyzed Mizoroki-Heck reaction of allyl aryl ethers with aryl iodides gave aryl cinnamyl ethers using a catalytic amount of Pd(OAc)2 in DMF at 50 °C with phosphine-free hydrazone as a ligand in good yields.  相似文献   

8.
A new, convenient synthesis of alkyl and aryl 1-propenyl ether monomers in good to excellent yields has been developed. Alkyl and aryl allyl ethers can be smoothly isomerized to the desired 1-propenyl ethers by refluxing in a basic ethanolic solution containing pentacarbonyliron as a catalyst. A simplified two-step, one-pot procedure has also been developed which consists of combining an alcohol with allyl bromide in the presence of base and then adding pentacarbonyliron to isomerize the in-situ generated allyl ether to directly give the 1-propenyl ether. Good yields of alkyl 1-propenyl ethers were obtained using this process. Factors affecting the isomerization reaction were investigated and a mechanism was proposed.  相似文献   

9.
Punna S  Meunier S  Finn MG 《Organic letters》2004,6(16):2777-2779
Aryl propargyl ethers and esters are cleaved selectively in the presence of aryl methyl ethers and esters by boron tribromide in dichloromethane. Under the same conditions, allyl ethers undergo very rapid Claisen rearrangement, and benzyl ethers are also cleaved more rapidly than propargyl. A mechanism involving intramolecular delivery of bromide to the propargyl terminus is proposed. [reaction: see text]  相似文献   

10.
Youn SW  Eom JI 《Organic letters》2005,7(15):3355-3358
[reaction: see text]. We herein report the development of one-pot procedures for the conversion of allyl aryl ethers to 2-methylbenzofurans (via sequential Claisen rearrangement and oxidative cyclization) and for the conversion of aryl homoallyl ethers to chromenes (via direct oxidative cyclization). It is likely that both reactions proceed via a common Pd-catalyzed pathway involving olefin activation, nucleophilic attack, and beta-hydride elimination.  相似文献   

11.
The system aluminum tri-tert-butylate-tert-butyl hydroperoxide oxidizes alkyl allyl and aryl allyl ethers by the radical mechanism at room temperature. In the process, either the substrate skeleton is preserved and the carbonyl and hydroperoxy groups are introduced, or the carbon-carbon and carbon-oxygen bonds in the allyl moiety are cleaved. In allyl benzyl ether the reaction centers are the methylene groups of the benzyl and allyl fragments.  相似文献   

12.
The intramolecular transfer of the allyl group of functionalized allyl aryl ethers to an aldehyde group in the presence of Ni0 complexes was studied from chemical, electrochemical and theoretical points of view. The chemical reaction involves the addition of Ni0 to the allyl ether followed by stoichiometric allylation. The electrochemical process is catalytic in nickel and involves the reduction of intermediate eta3-allylnickel(II) complexes.  相似文献   

13.
Allyl aryl ethers of adamantane series were obtained by reacting (E)-1-(adamant-1-yl)-3-bromoprop-1-ene with phenol or ethyl salicylate. The features of thermal transformations of allyl aryl ethers containing bulky adamantane scaffold were investigated. It has been found that the composition of the reaction products is largely dependent on temperature, time and nature of the solvent. When a nucleophilic solvent was used, the reaction proceeded via formal substitution of phenoxy fragment with nucleophilic species prevailing in the reaction medium.  相似文献   

14.
Allyl aryl ethers which have no strongly electron attracting substituents undergo a charge-induced [3 s, 3 s] sigmatropic rearrangement in the prescence of 0.7 mole boron trichloride in chlorobenzene at low temperature, to give after hydrolysis the corresponding o-allyl phenols (Tables 1 and 2). The charge induction causes an increase in the reaction rate relative to the thermal Claisen rearrangement of ~1010. With the exception of allyl 3-methoxyphenyl ether (5) , m-substituted allyl aryl ethers show similar behaviour (with respect to the composition of the product mixture) to that observed in the thermal rearrangement (Table 3). The rearrangement of allyl aryl ethers with an alkyl group in the o-position, in the prescence of boron trichloride, yields a mixture of o- and p-allyl phenols, where more p-product is present than in the corresponding product mixture from the thermal rearrangement (Table 4). This ‘para-effect’ is especially noticeable for o-alkylated α-methylallyl aryl ethers (Table 5 ). With boron trichloride, 2,6-dialkylated allyl aryl ethers give reaction products which arise, in each case, from a sequence of an ortho-Claisen rearrangement followed by a [1,2]-, [3,3]- or [3,4]-shift of the allyl moiety (Tables 6 and 7). Ally1 mesityl ether (80), with boron trichloride, gives pure 3-ally1 mesitol ( 95 ). From phenol, penta-ally1 phenol ( 101 ) can be obtained by a total of five O-allylations followed by three thermal and two boron trichloride-induced rearrangements. The sigmatropic rearrangements of the ethers studied, using D- and 14C-labelled compounds, are collected in scheme 2; only the reaction steps indicated by heavy arrows are of importance. With protic acids, there is a [3,3]-shift of the allyl group in 6-allyl-2,6-disubstituted cyclohexa-2,4-dien-l-ones, while with boron trichloride the [3,3]-reaction is also observed along with the much less important [1,2]- and [3,4]-transformations (Table 8). 4-Allyl-4-alkyl-cyclohexa-2,5-dien-1-ones give only [3,3]-rearrangements with boron trichloride (Table 9). As expected, the naphthalenone 112 , which is formed by allowing boron trichloridc to react for a short time with allyl (1-methyl-2-naphthyl) ether ( 111 ), undergoes only a [3,4] rearrangement (Scheme 3). Representations of how, in our opinion, the complex behaviour of allyl aryl ethers and allyl cyclohexadienones under the influence of boron trichloride, can be rationalized are collected together in Schemes 4 and 5. In the last part of the discussion section, the steric factors leading to the appearance of the ‘para-effect’, are dealt with (Scheme 6).  相似文献   

15.
Thiolate anions have been generated in a "demand-based" fashion under virtually neutral conditions for chemoselective deprotection of aryl alkyl ethers. Solvents play the critical role in making the reaction effective and should have high values of epsilon (>30), molecular polarizabilities (>10), and DN (>27) and low values of AN (<14). However, it is the combined effect of all of these physical properties that make a particular solvent effective. The reaction rates of cleavage of various aryl alkyl ethers are dependent on the steric crowding around the O-alkyl carbon and follow the order propargyl approximately allyl approximately benzyl > methyl > ethyl. Electron-withdrawing substituents increase the rate of ether cleavage reaction. The influence of the steric and electronic factors have been successfully exploited for selective deprotection of aryl alkyl ethers during inter- and intramolecular competitions.  相似文献   

16.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3)? H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

17.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3) H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

18.
A mild deprotection strategy for allyl ethers under basic conditions in the presence of a palladium catalyst is described. Under these conditions, aryl allyl ethers can be cleaved selectively in the presence of alkyl allyl ethers. These conditions are also effective in the deprotection of allyloxycarbonyl groups. The utility of the current methodology in sequence specific dendrimer synthesis is demonstrated.  相似文献   

19.
A series of aryl 1-propenyl ethers (ArPE) were prepared by the isomerization of the corresponding allyl aryl ethers (AArE) and used for photoinduced cationic polymerization studies. Attempted polymerization reactions using diaryliodonium salts as photoinitiators generally resulted in low yields of oligomers. Further studies revealed that these compounds have much lower reactivity in cationic vinyl polymerization as compared to their alkyl analogues. Moreover, side reactions resulting from chain transfer due to Friedel–Crafts alkylations take place and compete with vinyl polymerization. These side reactions are responsible for the low molecular weights observed in the cationic photopolymerization of aryl 1-propenyl ether monomers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3017–3025, 1999  相似文献   

20.
2,4-Disubstituted 3-chlorofurans were synthesized in 42-69% overall yields by CuCl/bpy-catalyzed halogen atom transfer radical cyclization of 1-substituted 2,2,2-trichloroethyl allyl ethers to 2-substituted 3,3-dichloro-4-(1-chloroalkyl)tetrahydrofurans followed by base promoted dehydrochlorination. Diels-Alder reactions of 4-substituted 2-(2-furyl)-, 2-styryl-, and 2-crotyl-3-chlorofurans with dimethyl acetylenedicarboxylate occurred exclusively on the chlorofurano diene moieties and not on the non-chlorinated furano diene or the chlorinated exocyclic diene alternatives, demonstrating the predominance of the halogen effect in the furan Diels-Alder reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号