首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polynomials and exponential polynomials play a fundamental role in the theory of spectral analysis and spectral synthesis on commutative groups. Recently several new results have been published in this field [24,6]. Spectral analysis and spectral synthesis has been studied on some types of commutative hypergroups, as well. However, a satisfactory definition of exponential monomials on general commutative hypergroups has not been available so far. In [5,7,8] and [9], the authors use a special concept on polynomial and Sturm–Liouville-hypergroups. Here we give a general definition which covers the known special cases.  相似文献   

2.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

3.
The structure of the set of positive solutions of the semilinear elliptic boundary value problem depends on a certain non-degeneracy condition, which was proved by K.J. Brown [2] and T. Ouyang and J. Shi [12], with a shorter proof given later by P. Korman [8]. In this note we present a more general result, communicated to us by L. Nirenberg [13]. We also discuss the extensions in cases when the domain D is in R 2, and it is either symmetric or convex.  相似文献   

4.
Sufficient conditions of the classical type ensuring the almost everywhere (a.e.) convergence of the nonnegative-order Riesz means of double orthogonal series are indicated. Analogies of the onedimensional results of Kolmogoroff [7] and Kaczmarz?CZygmund [5, 12] have been obtained for the Cesaro means and those of Zygmund [13] for the Riesz means. These analogies establish the a.e. equiconvergence of the lacunary subsequences of rectangular partial sums and of the entire sequence of Riesz means, generalize the corresponding results of Moricz [9] for the Cesaro a.e. summability by (C, 1, 1), (C, 1, 0), and (C, 0, 1) methods of double orthogonal series, and were announced earlier without proofs in the author??s work [3].  相似文献   

5.
Burgers?? equations have been introduced to study different models of fluids (Bateman, 1915, Burgers, 1939, Hopf, 1950, Cole, 1951, Lighthill andWhitham, 1955, etc.). The difference-differential analogues of these equations have been proposed for Schumpeterian models of economic development (Iwai, 1984, Polterovich and Henkin, 1988, Belenky, 1990, Henkin and Polterovich, 1999, Tashlitskaya and Shananin, 2000, etc.). This paper gives a short survey of the results and conjectures on Burgers type equations, motivated both by fluid mechanics and by Schumpeterian dynamics. Proofs of some new results are given. This paper is an extension and an improvement of (Henkin, 2007, 2011).  相似文献   

6.
7.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

8.
In this paper, we prove a local in time unique existence theorem for the free boundary problem of a compressible barotropic viscous fluid flow without surface tension in the \(L_p\) in time and \(L_q\) in space framework with \(2 < p < \infty \) and \(N < q < \infty \) under the assumption that the initial domain is a uniform \(W^{2-1/q}_q\) one in \({\mathbb {R}}^{N}\, (N \ge 2\) ). After transforming a unknown time dependent domain to the initial domain by the Lagrangian transformation, we solve problem by the Banach contraction mapping principle based on the maximal \(L_p\) \(L_q\) regularity of the generalized Stokes operator for the compressible viscous fluid flow with free boundary condition. The key issue for the linear theorem is the existence of \({\mathcal {R}}\) -bounded solution operator in a sector, which combined with Weis’s operator valued Fourier multiplier theorem implies the generation of analytic semigroup and the maximal \(L_p\) \(L_q\) regularity theorem. The nonlinear problem we studied here was already investigated by several authors (Denisova and Solonnikov, St. Petersburg Math J 14:1–22, 2003; J Math Sci 115:2753–2765, 2003; Secchi, Commun PDE 1:185–204, 1990; Math Method Appl Sci 13:391–404, 1990; Secchi and Valli, J Reine Angew Math 341:1–31, 1983; Solonnikov and Tani, Constantin carathéodory: an international tribute, vols 1, 2, pp 1270–1303, World Scientific Publishing, Teaneck, 1991; Lecture notes in mathematics, vol 1530, Springer, Berlin, 1992; Tani, J Math Kyoto Univ 21:839–859, 1981; Zajaczkowski, SIAM J Math Anal 25:1–84, 1994) in the \(L_2\) framework and Hölder spaces, but our approach is different from them.  相似文献   

9.
In this paper, we study mutually-adjoint boundary-value problems with a deviation from the characteristic for multidimensional Gellerstedt equation. In [3, 4], for the equation of the vibration of a string, the boundary-value problem with a deviation from the characteristic was studied, where the main attention was paid to the study of such problems for hyperbolic equations. For hyperbolic equations on the plane, this problem was studied in [5, 9].  相似文献   

10.
Recently many authors have studied properties of triangles and the theory of perspective triangles in the Euclidean plane (see Kimberling et al. J Geom Graph 14:1–14, 2010; Kimberling et al. http://faculty.evansville.edu/ck6/encyclopedia/ETC.html, 2012; Moses and Kimberling J Geom Graph 13:15–24, 2009; Moses and Kimberling Forum Geom 11:83–93, 2011; Odehnal Elem Math 61:74–80, 2006; Odehnal Forum Geom 10:35–40, 2010; Odehnal J Geom Graph 15: 45–67, 2011). The aim of this paper is to present a new approach to the construction of points on the Feuerbach hyperbola. Surprisingly, these points can be obtained as centers of perspectivity of a triangle ABC and a certain one-parametric set of triangles ABC′. The presented construction is based on partitions of the triangle’s sides and—in a way—dual to the construction of points on the Kiepert hyperbola. It can also be generalized to spherical triangles. The proofs are based on an affine property of triangles, which amazingly can also be used for the proof of the spherical theorem.  相似文献   

11.
We provide new sufficient convergence conditions for the semilocal convergence of Ulm’s method (Izv. Akad. Nauk Est. SSR 16:403–411, 1967) in order to approximate a locally unique solution of an equation in a Banach space setting. We show that in some cases, our hypotheses hold true but the corresponding ones (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) do not. We also show that under the same hypotheses and computational cost as (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) finer error sequences can be obtained. Numerical examples are also provided further validating the results.  相似文献   

12.
This is the first of a series of papers on partition functions and the index theory of transversally elliptic operators. In this paper we only discuss algebraic and combinatorial issues related to partition functions. The applications to index theory are in [4], while in [5] and [6] we shall investigate the cohomological formulas generated by this theory. Here we introduce a space of functions on a lattice which generalizes the space of quasipolynomials satisfying the difference equations associated to cocircuits of a sequence of vectors X, introduced by Dahmen and Micchelli [8]. This space $ \mathcal{F}(X) $ contains the partition function $ {\mathcal{P}_{(X)}} $ . We prove a “localization formula” for any f in $ \mathcal{F}(X) $ , inspired by Paradan's decomposition formula [12]. In particular, this implies a simple proof that the partition function $ {\mathcal{P}_{(X)}} $ is a quasi-polynomial on the Minkowski differences $ \mathfrak{c} - B(X) $ , where c is a big cell and B(X) is the zonotope generated by the vectors in X, a result due essentially to Dahmen and Micchelli.  相似文献   

13.
We obtain an improved Sobolev inequality in \(\dot{H}^s\) spaces involving Morrey norms. This refinement yields a direct proof of the existence of optimizers and the compactness up to symmetry of optimizing sequences for the usual Sobolev embedding. More generally, it allows to derive an alternative, more transparent proof of the profile decomposition in \(\dot{H}^s\) obtained in Gérard (ESAIM Control Optim Calc Var 3:213–233, 1998) using the abstract approach of dislocation spaces developed in Tintarev and Fieseler (Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007). We also analyze directly the local defect of compactness of the Sobolev embedding in terms of measures in the spirit of Lions (Rev Mat Iberoamericana 1:145–201, 1985, Rev Mat Iberoamericana 1:45–121, 1985). As a model application, we study the asymptotic limit of a family of subcritical problems, obtaining concentration results for the corresponding optimizers which are well known when \(s\) is an integer (Rey in Manuscr Math 65:19–37, 1989, Han in Ann Inst Henri Poincaré Anal Non Linéaire 8:159–174, 1991, Chou and Geng in Differ Integral Equ 13:921–940, 2000).  相似文献   

14.
15.
S. V. Nagaev 《Acta Appl Math》2007,97(1-3):151-162
Burkholder’s type inequality is stated for the special class of martingales, namely the product of independent random variables. The constants in the latter are much less than in the general case which is considered in Nagaev (Acta Appl. Math. 79, 35–46, 2003; Teor. Veroyatn. i Primenen. 51(2), 391–400, 2006). On the other hand, the moment inequality is proved, which extends these by Wittle (Teor. Veroyatn. i Primenen. 5(3), 331–334, 1960) and Dharmadhikari and Jogdeo (Ann. Math. Stat. 40(4), 1506–1508, 1969) to martingales.  相似文献   

16.
In a projective plane $\mathit{PG}(2,\mathbb{K})$ defined over an algebraically closed field $\mathbb{K}$ of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p>0 apart from three possible exceptions $\rm{Alt}_{4}$ , $\rm{Sym}_{4}$ , and $\rm{Alt}_{5}$ . Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvinsky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641–1648, 2009).  相似文献   

17.
In this paper we consider a new class of convex bodies which was introduced in [11]. This is the class of belt bodies, and it is a natural generalization of the class of zonoids (see the surveys [18, 28, 24]). While the class of zonoids is not dense in the family of all centrally symmetric, convex bodies, the class of belt bodies is dense in the set of all convex bodies. Nevertheless, we shall extend solutions of combinatorial problems for zonoids (cf. [2, 12]) to the class of belt bodies. Therefore, we first introduce the set of belt bodies by using zonoids as starting point. (To make the paper self-contained, a few parts of the approach from [11] are given repeatedly.) Second, complete solutions of three well-known (and generally unsolved) problems from the combinatorial geometry of convex bodies are given for the class of belt bodies. The first of these, connected with the names of I. Gohberg and H. Hadwiger, is the problem of covering a convex body with smaller homothetic copies, or the equivalent illumination problem. The second is the Szökefalvi-Nagy problem, which asks for the determination of the convex bodies whose families of translates have a given Helly dimension. The third problem concerns special fixing systems, a notion which is due to L. Fejes Tóth. These solutions consist of improved and more general approaches to recently solved problems (as in the case of the Helly-dimensional classification of belt bodies) or new results (as those concerning minimal fixing systems, providing also an answer to a problem of B. Grünbaum which is not only restricted to belt bodies).  相似文献   

18.
In this note we study the Navier–Stokes initial boundary value problem in exterior domains. We assume that the initial data has just finite Dirichlet norm. We call the solution \(D\) -solution. It is well known that the analogous steady problem is solved in Galdi (An Introduction to the Mathematical Theory of the Navier–Stokes Equations II. Springer, Berlin, 1994), as well as the existence of time periodic solutions in Maremonti et al. (J Math Sci 93(5):719–746, 1999, Zap. Nauchn. Semin. POMI 233:142–182, 1996). So it is natural to inquire about the case of the nonstationary problem.  相似文献   

19.
In view of Andreotti and Grauert (Bull Soc Math France 90:193–259, 1962) vanishing theorem for \(q\) -complete domains in \(\mathbb C ^{n}\) , we reprove a vanishing result by Sha (Invent Math 83(3):437–447, 1986), and Wu (Indiana Univ Math J 36(3):525–548, 1987), for the de Rham cohomology of strictly \(p\) -convex domains in \(\mathbb R ^n\) in the sense of Harvey and Lawson (The foundations of \(p\) -convexity and \(p\) -plurisubharmonicity in riemannian geometry. arXiv:1111.3895v1 [math.DG]). Our proof uses the \({L}^2\) -techniques developed by Hörmander (An introduction to complex analysis in several variables, 3rd edn. North-Holland Publishing Co, Amsterdam 1990), and Andreotti and Vesentini (Inst Hautes Études Sci Publ Math 25:81–130, 1965).  相似文献   

20.
In [10] (C R Acad Sci Paris Ser I Math 323(2) 117–120, 1996), [11] (Math Res Lett 10(1):71–83 2003), [12] (Can J Math 57(6):1215–1223 2005), Khare showed that any strictly compatible systems of semisimple abelian mod p Galois representations of a number field arises from a unique finite set of algebraic Hecke characters. In this article, we consider a similar problem for arbitrary global fields. We give a definition of Hecke character which in the function field setting is more general than previous definitions by Goss and Gross and define a corresponding notion of compatible system of mod p Galois representations. In this context we present a unified proof of the analog of Khare’s result for arbitrary global fields. In a sequel we shall apply this result to strictly compatible systems arising from Drinfeld modular forms, and thereby attach Hecke characters to cuspidal Drinfeld Hecke eigenforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号