共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Roderick McCrorie 《Acta Appl Math》2003,79(1-2):9-16
This note exposits the problem of aliasing in identifying finite parameter continuous time stochastic models, including econometric models, on the basis of discrete data. The identification problem for continuous time vector autoregressive models is characterised as an inverse problem involving a certain block triangular matrix, facilitating the derivation of an improved sufficient condition for the restrictions the parameters must satisfy in order that they be identified on the basis of equispaced discrete data. Sufficient conditions already exist in the literature but these conditions are not sharp and rule out plausible time series behaviour. 相似文献
2.
In order to predict a continuous time process on an entire‐time interval, we introduce the C[0,1]‐valued autoregressive process of first order. We show, under mild regularity conditions the convergence almost sure of the
predictor. We propose an estimator of the dimension of the projecting space of observations and illustrate the results by
a numerical example.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
3.
周期相关时间序列与周期自回归模型 总被引:1,自引:0,他引:1
介绍了周期相关时间序列和周期自回归模型,并研究了周期自回归时间序列的稳定性及周期性,得到了它为周期相关时间序列的一个充要条件,推广了文献[1]的结论. 相似文献
4.
一类带随机延滞的时间序列模型的遍历性 总被引:1,自引:0,他引:1
本利用马氏化方法和一般状态空间马氏链的基本理论研究了一类带随机延滞的时间序列模型的遍历性,得到了该模型伴随几何遍历的一个判别准则. 相似文献
5.
建立新疆手足口病发病率的季节求和自回归-移动平均模型(Seasonal AutoregressiveIntegrated Moving Average Model,SARIMA),探讨采用SARIMA模型预测手足口病发病趋势的可行性和实用性.利用R统计软件基于新疆2006-2012手足口病月发病率数据建立SARIMA模型,拟合2012年手足口病各月发病率数据,并预测了2013年手足口病月发病率.经过序列平稳化、模型识别以及模型诊断,SARIMA(1,0,1)(0,1,0)_(12)能较好地拟合既往时间段的发病率,且预测值符合新疆手足口病实际发病率的波动趋势.SARIMA模型能够有效地预测手足口病发病趋势,对预警、防控具有积极指导意义. 相似文献
6.
经济时间序列的连续参数小波网络预测模型 总被引:2,自引:0,他引:2
本文利用连续小波变换方法,给出一种连续参数小波网络。网络参数的学习采用一种类似神经网络的后向传播学习算法的随机梯度算法。另外,提出了一种借助小波分析理论指导网络参数赋初值的方法。进一步,通过对中国进出口贸易额时间序列预测建模的研究和仿真预测,提出了用连续参数小波网络建立经济时间序列预测模型的一般步骤和方法。预测结果表明,此模型具有较好的泛化、学习能力,可以有效地在数值上逼近时间序列难以定量描述的相互关系,所以利用连续参数小波网络建立的时间序列预测模型有较高的预测精度。 相似文献
7.
We study the statistical prediction of a continuous time stochastic process admitting a functional autoregressive representation.
We construct an approximation of Parzen's optimal predictor in reproducing kernel spaces framework. This approach did not
require an estimation of the operator of the autoregressive representation.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
8.
We consider a threshold autoregressive stochastic volatility model where the driving noises are sequences of iid regularly
random variables. We prove that both the right and the left tails of the marginal distribution of the log-volatility process
(αt)t are regularly varying with tail exponent −α with α > 0. We also determine the exact values of the coefficients in the tail behaviour of the process (αt)t.
AMS 2000 Subject Classification. Primary—62G32, 62PO5 相似文献
9.
贝叶斯向量自回归分析方法及其应用 总被引:2,自引:1,他引:2
由于经济环境的多变,使得经济预测面临数据量少的建模难题,贝叶斯方法对小样本数据建模问题具有明显优势。本文在共轭条件似然函数"矩阵正态-Wishart分布"意义下,首先讨论了向量自回归模型的贝叶斯分析方法,得到了模型参数的后验分布与一步预测分布。其次,给出了分量方程的对应结果,说明了模型阶数的推断方法。最后,列出了计算步骤,并作为应用,对上海房地产价格指数数据进行预测建模,取得了较好效果。 相似文献
10.
11.
用拟极大似然估计方法研究了误差为AR(1)时间序列的半参数回归模型,得到了参数及非参数的拟极大似然估计量,并研究了它们的渐近分布. 相似文献
12.
本文讨论一阶自回归模型自回归参数$\phi$的变点问题. 对于一阶自回归模型, 在模型的白噪声序列的方差$\sigma^2$已知和未知的条件下, 利用最大似然方法, 我们分别讨论了模型自回归参数$\phi$的Abrupt Change-Point 和Gradual Change-Point的检测问题. 相似文献
13.
金融市场是一个复杂、演化、非线性的动态变化的系统.金融数据往往带有噪声,非平稳且时常是混沌的.本文基于时序数据的先验知识——近期数据对于预测未来走势提供了更多的信息,对于传统的支持向量机的回归模型做出了一定的改进,即对于近期的数据预测错误施以更严重的惩罚,构建了改进的支持向量回归机模型.使用该改进模型对中国股票市场指数时间序列进行了预测,结果显示,本文改进的模型较之传统的支持向量回归机模型和神经网络模型有较好的预测效果. 相似文献
14.
本文考虑多项probit模型中参数的极大似然估计(MLE)的存在性.在协方差阵已知和均匀结构两种情况下,给出MLE存在的充要条件. 相似文献
15.
16.
Robert J. Elliott 《Applied Mathematical Finance》2013,20(5):450-460
AbstractA continuous time financial market is considered where randomness is modelled by a finite state Markov chain. Using the chain, a stochastic discount factor is defined. The probability distributions of default times are shown to be given by solutions of a system of coupled partial differential equations. 相似文献
17.
运用参数的极大似然估计法,给出在线性约束条件Hβ=C下异方差回归模型参数β和λ的极大似然估计,并讨论了估计参数的性质和模型的残差.利用得到的结论对线性约束下异方差回归模型的进一步研究和应用具有一定的理论和实际价值. 相似文献
18.
For about thirty years, time series models with time-dependent coefficients have sometimes been considered as an alternative
to models with constant coefficients or non-linear models. Analysis based on models with time-dependent models has long suffered
from the absence of an asymptotic theory except in very special cases. The purpose of this paper is to provide such a theory
without using a locally stationary spectral representation and time rescaling. We consider autoregressive-moving average (ARMA)
models with time-dependent coefficients and a heteroscedastic innovation process. The coefficients and the innovation variance
are deterministic functions of time which depend on a finite number of parameters. These parameters are estimated by maximising
the Gaussian likelihood function. Deriving conditions for consistency and asymptotic normality and obtaining the asymptotic
covariance matrix are done using some assumptions on the functions of time in order to attenuate non-stationarity, mild assumptions
for the distribution of the innovations, and also a kind of mixing condition. Theorems from the theory of martingales and
mixtingales are used. Some simulation results are given and both theoretical and practical examples are treated.
Received 2004; Final version 23 December 2004 相似文献
19.
??In this paper, semiparametric estimation of a regression function in the third order partially linear autoregressive model with first order autoregressive errors is mainly studied. We suppose that the regression function has a parametric framework, and use the conditional least squares method to obtain the parameter estimators. Then semiparametric estimators of the regression function can be given by combining with the nonparametric kernel function adjustment. Furthermore, under certain conditions, the consistency of the estimators is proved. Finally, simulation research is presented to evaluate the
effectiveness of the proposed method. 相似文献
20.
姜翔程 《数学的实践与认识》2012,42(19):71-78
支持向量机在系统辨识和分类研究方面比较成熟,目前尚没有提出有效的支持向量回归理论来解决非线性、时变、干扰的复杂问题.支持向量回归机主要用于因果关系点对的回归预测,把支持向量回归机应用于水文混沌时间序列的预测研究是一个有意义的工作.在支持向量机一般理论基础上,提出了水文混沌时间序列支持向量回归机模型,并就模型进行仿真计算,讨论了模型参数对支持向量回归机预测精度的影响,为模型参数寻优提供一般指导原则.直门达水文站径流量混沌时间序列支持向量回归机预测实验表明,水文混沌时间序列支持向量回归机模型是有效的. 相似文献