首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of hydrogen on the adsorption and dissociation of the oxygen molecule on a TiO2 anatase (001) surface is studied by first‐principles calculations coupled with the nudged elastic band (NEB) method. Hydrogen adatoms on the surface can increase the absolute value of the adsorption energy of the oxygen molecule. A single H adatom on an anatase (001) surface can lower dramatically the dissociation barrier of the oxygen molecule. The adsorption energy of an O2 molecule is high enough to break the O?O bond. The system energy is lowered after dissociation. If two H adatoms are together on the surface, an oxygen molecule can be also strongly adsorbed, and the adsorption energy is high enough to break the O?O bond. However, the system energy increases after dissociation. Because dissociation of the oxygen molecule on a hydrogenated anatase (001) surface is more efficient, and the oxygen adatoms on the anatase surface can be used to oxidize other adsorbed toxic small gas molecules, hydrogenated anatase is a promising catalyst candidate.  相似文献   

2.
Adsorption of binary mixtures onto activated carbon Norit R1 for the system nitrogen-methane-carbon dioxide was investigated over the pressure range up to 15 MPa. A new model is proposed to describe the experimental data. It is based on the assumption that an activated carbon can be characterized by the distribution function of elements of adsorption volume (EAV) over the solid-fluid potential. This function may be evaluated from pure component isotherms using the equality of the chemical potentials in the adsorbed phase and in the bulk phase for each EAV. In the case of mixture adsorption a simple combining rule is proposed, which allows determining the adsorbed phase density and its composition in the EAV at given pressure and compositions of the bulk phase. The adsorbed concentration of each adsorbate is the integral of its density over the set of EAV. The comparison with experimental data on binary mixtures has shown that the approach works reasonably well. In the case of high-pressure binary mixture adsorption, when only total amount adsorbed was measured, the proposed model allows reliably determining partial amounts of the adsorbed components.  相似文献   

3.
Ab initio cluster quantum chemical calculations at the Hartree–Fock and second-order Møller–Plesset perturbation theory levels were carried out to mimic the interactions of water and methanol with a mixture of Cu and Zn metals. It was shown that both molecular and dissociative adsorption of methanol on a mixture of Cu and Zn metal catalyst are preferred over the corresponding adsorptions of water. Estimated transition-state structures for dissociation of methanol into CH·3 and OH· lie about 9.0 and 22.0 kcal/mol higher compared to the dissociated (forward reaction) and molecular adsorption (reverse reaction) complexes, respectively. Based on distinct radicals' bond energies with the active sites of the catalyst considered, it is suggested that hydrogen molecules could be formed through a chain of homogeneous reactions of methyl radicals released into the gas phase with the water and/or methanol molecules.  相似文献   

4.
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous–organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous–organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.  相似文献   

5.
A new model for equilibrium adsorption of a binary mixture on zeolites that takes into account the energy nonuniformity of the adsorption field in the zeolite cavities was developed on the basis of statistical thermodynamics. The nonuniformity of the adsorption field produces rearrangement of molecules in the cavity volume, decreasing the entropy, internal energy, and Helmholz free energy. A procedure for calculation of the thermodynamic functions from the data on the adsorption of pure components was proposed. The limiting cases of maximum ordering of the molecules in the cavity and their random distribution were considered. The approach proposed was exemplified by the substantially non-ideal system nitrogen--argon--zeolite NaX at 160 K. The proposed model describes the behavior of this mixture much better than that of the ideal adsorbed solution theory.  相似文献   

6.
The adsorption and photoreaction of oxalic acid on the surface of anatase and rutile TiO2 nanoparticles have been studied using a combined experimental and theoretical approach. In the dark, the experimental adsorption reaches an equilibrium state that can be described as a mixture of adsorbed water and oxalic acid molecules, with the latter forming two different surface complexes on anatase and one on rutile particles. When the system is subsequently illuminated with UV(A) light, the surface becomes enriched with absorbed oxalic acid, which replaces photo-desorbed water molecules, and one of the adsorbed oxalic acid structures on anatase is favoured over the other.  相似文献   

7.
Thermodynamic treatment of surfactant mixture was developed for the adsorption at interfaces of thin liquid films and applied to the study of the foam film stabilized by decyl methyl sulfoxide (DeMS) in the presence of NaCl. The total surface density of NaCl and DeMS and the mole fraction of DeMS in the adsorbed film at the film surface were numerically evaluated by applying thermodynamic equations to the film tension as a function of the total molality of NaCl and DeMS and the mole fraction of DeMS in the mixture. Miscibility of NaCl and DeMS at the film surface was clarified by a phase diagram of adsorption and compared with that at the meniscus adjacent to the foam film. Judging from a phase diagram of phase transition, the transition in the DeMS foam film between common black and Newton black films, observed in part II, is a negative azeotropic transformation caused by the attractive interaction between the head group of DeMS molecule and Na+ or Cl in the adsorbed film.  相似文献   

8.
Density functional theory (DFT) calculations at ONIOM DFT B3LYP/ 6‐31G**‐MD/UFF level are employed to study molecular and dissociative water and ammonia adsorption on anatase TiO2 (001) surface represented by partially relaxed Ti20O35 ONIOM cluster. DFT calculations indicate that water molecule is dissociated on anatase TiO2 (001) surface by a nonactivated process with an exothermic relative energy difference of 58.12 kcal/mol. Dissociation of ammonia molecule on the same surface is energetically more favorable than molecular adsorption of ammonia (?37.17 kcal/mol vs. ?23.28 kcal/mol). The vibration frequency values also are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) surface. The computed adsorption energy and vibration frequency values are comparable with the values reported in the literature. Finally, several thermodynamical properties (ΔH°, ΔS°, and ΔG°) are calculated for temperatures corresponding to the experimental studies. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
In order to obtain the exact information of atomic number density in UO2(NO3)2 · 6H2O–HNO3–H2O ternary mixture, the theoretical estimation of excess volume which is one of excess properties of non-ideal solution is discussed in this study. The calculation model based on the Stokes-Robinson application of the Brunauer-Emmett-Teller (BET) adsorption isotherm and activity equations of water nitric acid, and uranyl nitrate hexahydrate (UNH) which were used to calculate distribution coefficients in a solvent extraction system has one adjustable parameter and two BET constants. The BET constants have been determined by asymptotic method on the BET adsorption isotherm as a function of water activity in the ternary system. As results of the study, the observed volume of mixture agrees with the volume predicted by the simulation within a maximum relative deviation of 0.78% and the excess volume is also estimated as a function of total molality.  相似文献   

10.
Summary In reversed-phase liquid chromatography with n-alkyl bonded silica, the dead volume (V0) of the column is theoretically indeterminate owing to adsorption of organic modifier on n-alkyl chains and of water on silanol groups. With binary mobile phases, retention volumes of the mobile phase components and of their deuterated species are relaeed to the adsorption isotherms and V0 by equations which can be solved with some assumptions on the adsorbed layer composition. Methanol-water and acetonitrile-water systems are studied. As the experimental excess isotherm shows a linear part in the concentration range 50–80% in organic modifier, the hypothesis of an adsorbed layer of constant composition in this range is possible. When increasing the water content of the mobile phase, adsorption of water occurs up to saturation of silanol groups. Then the assumption of a constant water content for a mobile phase having more than 50% of water is applied. With the hypothesis of a constant adsorbed content of organic modifier when the eluent has more than 80% of organic modifier, V0 and the absolute isotherms are calculated over the entire range of mobile phase composition. Experimental retention behavior of the mobile phase components are totally explained by these V0 determinations. The retention times of commonly used V0 markers are compared with V0 values. It is shown that, when buffering the eluent, no visible effect on the distribution equilibrium is observed, so that injection of concentrated potassium nitrate is a convenient method to measure V0. With a few solutes with are UV detectable it is possible to measure V0 whatever the mobile phase composition in methanol-water and acetonitrile-water systems.  相似文献   

11.
MCM-41 and buckytubes are novel porous materials with controllable pore sizes and narrow pore size distributions. Buckytubes are carbon tubes with internal diameters in the range 1–5 urn. The structure of each tube is thought to be similar to one or more graphite sheets rolled up in a helical manner. MCM-41 is one member of a new family of highly uniform mesoporous silicate materials produced by Mobil, whose pore size can be accurately controlled in the range 1.5–10 nm. We present grand canonical Monte Carlo (GCMC) simulations of single fluid and binary mixture adsorption in a model buckytube, and nonlocal density functional theory (DFT) calculations of trace pollutant separation in a range of buckytubes and MCM-41 pores. Three adsorbed fluids are considered; methane, nitrogen and propane. The GCMC studies show that the more strongly adsorbed pure fluid is adsorbed preferentially from an equimolar binary mixture. Ideal adsorbed solution theory (IAST) is shown to give good qualitative agreement with GCMC when predicting binary mixture separations. The DFT results demonstrate the very large increases in trace pollutant separation that can be achieved by tuning the pore size, structure, temperature and pressure of the MCM-41 and buckytube adsorbent systems to their optimal values.  相似文献   

12.
In the present work, the adsorption and photodegradation of 4-chlorophenol (4-CP) on the (100) surface of TiO2 anatase with semiempirical SCF MO method MSINDO has been investigated. The (100) surface is modeled with free clusters (TiO2)n, where n = 20–80. The surface lattice titanium atoms, which are Lewis acid sites, are considered as adsorption sites. Molecular dynamics (MD) simulations have been used for the investigation of 4-CP adsorption conformations and the surface reaction mechanism studies. The 4-CP molecule has revealed parallel adsorption upon optimization, whereas under excitation conditions the perpendicular configuration is dominant. The aromatic ring cleavage by atomic oxygen has been studied computationally and accordingly, the relevant mechanism was suggested. By comparison with experimental and other theoretical calculations, it is shown that MSINDO can reproduce literature data with acceptable accuracy.  相似文献   

13.
The effects of various factors on the formation of O2 radical anions in the adsorption of an NO + O2 or NO2 + O2 mixture on ZrO2 were studied. It was found that the thermal stability of the O2 species depends on the composition of the adsorbed gas. It was suggested that nitrogen oxide complexes on ZrO2 centers are responsible for the formation of O2 . These centers are formed upon the treatment of the oxide in a vacuum; however, they are different from both coordinatively unsaturated Zr4+ cations (NO adsorption centers at 77 K) and Zr4+–O–O–Zr4+ centers, at which O2 are formed because of the adsorption of H2 + O2. Based on the experimental data, the mechanism of O2 formation in the adsorption of an NO + O2 mixture is discussed.  相似文献   

14.
The state of water upon adsorption on FAS-3 active carbon with relatively large micropores is studied by the NMR relaxation method. The dependences of the times of spin–lattice (T 1) and spin–spin (T 2) NMR relaxation of adsorbed water molecules on the adsorption value are established. The character of the dependences of T 1 and T 2 on the number of adsorbed water molecules per primary adsorption site reflects the specific features of the volume filling of micropores and the formation of a continuous adsorption layer on the mesopore surface due to cluster coalescence on the one wall of a pore. The results obtained are compared with the data for typical microporous active carbons, as well as with the data obtained by the adsorption method.  相似文献   

15.
P. L. Zhu 《Chromatographia》1985,20(7):425-433
Summary In RPLC the dead volume can be defined as the difference between the maximum column hold-up volume and the volume of the adsorbed phase. The composition of the adsorbed phase depends on the composition of the mobile phase and therefore, the dead volume also varies with it. In this work, the alkyl bonded phase acetonitrile (ACN)-water mobile phase system is investigated. In the system, deuterated water (D2O) and deuterated acetonitrile (D-ACN) are retained due to the isotopic dilution effect. By means of D2O and D-ACN, the absolute adsorption isotherm of the organic modifier ACN is measured. Based on the isotherm, the chromatographic behaviour of ACN, D-ACN and D2O, the variation of the dead volume with the composition of the mobile phase, and the approach to determine the maximum column hold-up volumn are explained. In addition, the various approaches to determine the dead volume are compared and the recommendations are given for the case of common unbuffered binary systems (MeOH/H2O, THF/H2O and ACN/H2O).  相似文献   

16.
The adsorption of SO2 on thin Langmuir–Blodgett layers of long-chain molecules containing tertiary amino groups is studied by the polarization method. The study was performed at room temperature using 10- to 25-nm-thick layers in the SO2 concentration range of 100–3000 mg/m3. It is shown that the amount of the adsorbed sulfur dioxide is proportional to its concentration in the gas phase.  相似文献   

17.
18.
The adsorption of methanol on titanium(IV) oxide in the anatase crystalline modification was investigated by IR spectroscopy and thermal desorption. It was established that coordinationally bonded alcohol and two types of methoxides are formed on the surface of the titanium dioxide (anatase). The adsorption centers of the methanol were found. The thermal stability and the degree of particípation in oxidation were determined for the surface structures of the adsorbed alcohol. The possibility of the conversion of the coordinationally bonded alcohol and the weakly bonded methoxyl into partial oxidation products and the strongly bonded methoxyl into total oxidation products was demonstrated. In the investigated system formate complexes at concentrations sufficient for detection by IR spectroscopy were only formed with the participation of the oxygen of the gas phase through further oxidation of the strongly bonded methoxyls.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 24, No. 6, pp. 707–712, November–December, 1988.The authors thank V. A. Gerasimova and S. K. Anan'in for assistance in the production of the experimental results.  相似文献   

19.
L. Hamon  L. Chenoy  G. De Weireld 《Adsorption》2014,20(2-3):397-408
The absolute adsorption isotherms are necessary to correctly evaluate the selectivity of the adsorbent material or to design adsorption processes at high pressure (e.g., H2 purification from syngas processes, removal of acid gas from natural gas,…). The aim of this work is thus to propose an easy method to correct the buoyancy effect of the bulk phase on the adsorbed phase volume during both pure gas and gas mixtures adsorption for pressures up to 10 MPa. The potential theory of adsorption and the Dubinin–Radushkevich relation are adapted by introducing mixing parameters based on simple Berthelot rules. The concept of internal pressure used to characterize the adsorbed phase is also adapted for mixtures. The method is then improved on a commercial activated carbon (AC), when adsorbing pure H2S and CH4, and their mixtures up to 5 MPa. The study points out the importance to carefully consider the buoyancy effect of the bulk phase on the adsorbed phase volume. Its impact on the adsorbent material selectivity at high pressures could affect the design and the performances of PSA or TSA processes. For example, only considering the excess adsorption data leads to an apparent selectivity 13 % greater than the absolute one for a concentration of 6 ppm of H2S in a CH4 matrix at 5 MPa (298 K) on the AC.  相似文献   

20.
The search for alternative materials with high dye adsorption capacity, such as methylene blue (MB), remains the focus of current studies. This computational study focuses on oxides ZnTiO3 and TiO2 (anatase phase) and on their adsorptive properties. Computational calculations based on DFT methods were performed using the Viena Ab initio Simulation Package (VASP) code to study the electronic properties of these oxides. The bandgap energy values calculated by the Hubbard U (GGA + U) method for ZnTiO3 and TiO2 were 3.17 and 3.21 eV, respectively, which are consistent with the experimental data. The most favorable orientation of the MB adsorbed on the surface (101) of both oxides is semi-perpendicular. Stronger adsorption was observed on the ZnTiO3 surface (−282.05 kJ/mol) than on TiO2 (–10.95 kJ/mol). Anchoring of the MB molecule on both surfaces was carried out by means of two protons in a bidentate chelating (BC) adsorption model. The high adsorption energy of the MB dye on the ZnTiO3 surface shows the potential value of using this mixed oxide as a dye adsorbent for several technological and environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号