首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of three-dimensional chiral metal-formate frameworks of [NH(4)][M(HCOO)(3)] (M = Mn, Fe, Co, Ni, and Zn) displays paraelectric to ferroelectric phase transitions between 191 and 254 K, triggered by disorder-order transitions of NH(4)(+) cations and their displacement within the framework channels, combined with spin-canted antiferromagnetic ordering within 8-30 K for the magnetic members, providing a new class of metal-organic frameworks showing the coexistence of magnetic and electric orderings.  相似文献   

2.
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.  相似文献   

3.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

4.
The novel mononuclear complex PPh(4)-mer-[Fe(III)(bpca)(3)(CN)(3)].H(2)O (1) [PPh(4)(+) = tetraphenylphosphonium cation and bpca = bis(2-pyridylcarbonyl)amidate anion] and ladder-like chain compound [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)] [Fe(III)(bpca)(CN)(3)]].3H(2)O (2) have been prepared and characterized by X-ray diffraction analysis. Compound 1 is a low-spin iron(III) compound with three cyanide ligands in mer arrangement and a tridentate N-donor ligand building a distorted octahedral environment around the iron atom. Compound 2 is an ionic salt made up of cationic ladder-like chains [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)]](+) and uncoordinated anions [Fe(III)(bpca)(3)(CN)(3)](-). The magnetic properties of 2 correspond to those of a ferrimagnetic chain with significant intrachain antiferromagnetic coupling between the low-spin iron(III) centers and the high-spin manganese(II) cations. This compound exhibits ferrimagnetic ordering below 2.0 K.  相似文献   

5.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

6.
A carboxy-substituted alkylammonium salt, namely, (4-carboxybenzyl)tributylammonium hexafluorophosphate, ZHPF(6), was prepared and used as incoming carboxylate ligand in a ligand-exchange reaction with [Mn(12)O(12)(O(2)CCH(3))(16)(H(2)O)(4)] (1) to afford a new Mn(12) single-molecule magnet (SMM), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PF(6)](16) (2), bearing 16 cationic units appended in the periphery. This compound behaves as a single-molecule magnet, exhibiting an out-of-phase ac magnetic susceptibility chi' '(M) signal that shows a single maximum in the 3.1-5.4 K temperature range. The frequency dependence of the maximum follows an Arrhenius law, with an effective energy barrier for reorientation of the spins U(eff) = 53 K. The reduced magnetization versus H/T data at different temperatures were fitted by using a Hamiltonian containing Zeeman, axial, and quartic zero-field splitting terms. The expected spin ground state S = 10 was found, and the least-squares fit afforded the following zero-field-splitting parameters: D = -0.44 cm(-1); B(4)(0) = 0.12 x 10(-4) cm(-1). Magnetization hysteresis loops were observed for 2, with a coercive field H(c) = 0.34 T. Complex 2 has been used as countercation in the preparation of a family of hybrid salts containing different polyoxometalate anions, [Mn(12)O(12)(Z)(16)(H(2)O)(4)][W(6)O(19)](8) (3), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PW(12)O(40)](16/3) (4), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Ni](4) (5), and [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Co](4) (6). 3-6 exhibit typical magnetic hysteresis loops with higher coercive fields for the complexes containing diamagnetic polyanions: H(c) = 0.075 T (3), 0.046 T (4), 0.016 T (5), and 0.0075 T (6). However, the dynamics of the magnetic behavior below the blocking temperature is similar in all compounds. Broad frequency-dependent out-of-phase ac susceptibility signals are observed, presumably due to mixtures of different Jahn-Teller isomers. Their temperature dependence is also typical of an activated-energy process, with effective energy barriers in the 50 K range, irrespective of the nature of the polyoxoanion (diamagnetic, as in 3 and 4, or paramagnetic, as in 5 and 6). These findings seem to discard any influence of the polyoxometalate in the magnetic properties of the SMM.  相似文献   

7.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

8.
A three-dimensional CO(3)(2-)-bridged Mn(II)-Ru(2)(II,III) complex, Mn(4)(H(2)O)(16)H[Ru(2)(CO(3))(4)](2)[Ru(2)(CO(3))(4)(H(2)O)(2)]·11H(2)O (1), was synthesized by self-assembling Ru(2)(CO(3))(4)(3-) paddle-wheel precursors and Mn(2+) cations. It contains an unprecedented layer [Ru(2)(CO(3))(4)](n)(3n-) with (4,4) network. The ferromagnetic coupling between spin centers results in ordering below 3.0 K.  相似文献   

9.
We report the synthesis, crystal structures, thermal, IR, UV-vis, and magnetic properties of a series of divalent transition metal formates, [NH4][M(HCOO)3], where M = divalent Mn, Co, or Ni. They crystallize in the hexagonal chiral space group P6(3)22. The structure consists of octahedral metal centers connected by the anti-anti formate ligands, and the ammonium cations sit in the channels. The chiral structure is a framework with the rarely observed 49.66 topology, and the chirality is derived from the handedness imposed by the formate ligands around the metals and the presence of units with only one handedness. The thermal properties are characterized by a decomposition at ca. 200 degrees C. The three compounds exhibit an antiferromagnetic ground state at 8.4, 9.8, and 29.5 K for Mn, Co, and Ni, respectively. The last two display a weak spontaneous magnetization due to a small canting of the moments below the critical temperature, and the Co compound shows a further transition at lower temperatures. The isothermal magnetizations at 2 K show spin-flop fields of 600 Oe (Mn), 14 kOe (Co), and above 50 kOe (Ni) and a small hysteresis with a remnant magnetization of 25 cm3 G mol(-1) (Co) and 50 cm3 G mol(-1) (Ni) and coercive field of 400 Oe (Co) and 830 Oe (Ni).  相似文献   

10.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

11.
We show in this paper how the 3MLCT luminescence of [Ru(bipy)(CN)4]2-, which is known to be highly solvent-dependent, may be varied over a much wider range than can be achieved by solvent effects, by interaction of the externally directed cyanide ligands with additional metal cations both in the solid state and in solution. A series of crystallographic studies of [Ru(bipy)(CN)4]2- salts with different metal cations Mn+ (Li+, Na+, K+, mixed Li+/K+, Cs+, and Ba2+) shows how the cyanide/Mn+ interaction varies from the conventional "end-on" with the more Lewis-acidic cations (Li+, Ba2+) to the more unusual "side-on" interaction with the softer metal cations (K+, Cs+). The solid-state luminescence intensity and lifetime of these salts is highly dependent on the nature of the cation, with Cs+ affording the weakest luminescence and Ba2+ the strongest. A series of titrations of the more soluble derivative [Ru(tBu2bipy)(CN)4]2- in MeCN with a range of metal salts showed how the cyanide/Mn+ association results in a substantial blue-shift of the 1MLCT absorptions, and 3MLCT energies, intensities, and lifetimes, with the complex varying from essentially non-luminescent in the absence of metal cation to showing strong (phi = 0.07), long-lived (1.4 micros), and high-energy (583 nm) luminescence in the presence of Ba2+. This modulation of the 3MLCT energy, over a range of about 6000 cm-1 depending on the added cation, could be used to reverse the direction of photoinduced energy transfer in a dyad containing covalently linked [Ru(bipy)3]2+ and [Ru(bipy)(CN)4]2- termini. In the absence of a metal cation, the [Ru(bipy)(CN)4]2- terminus has the lower 3MLCT energy and thereby quenches the [Ru(bipy)3]2+-based luminescence; in the presence of Ba2+ ions, the 3MLCT energy of the [Ru(bipy)(CN)4]2- terminus is raised above that of the [Ru(bipy)3]2+ terminus, resulting in energy transfer to and sensitized emission from the latter.  相似文献   

12.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

13.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

14.
Egorov VV  Bolotin AA 《Talanta》2006,70(5):1107-1116
The influence of the ISE membrane composition on the selectivity for primary, secondary, tertiary, and quaternary alkylammonium cations, as well as for cations of physiologically active amines, has been investigated. Factors studied include the effect of plasticizer (2-nitrophenyl octyl ether, o-NPOE; dibutyl phthalate, DBP; dinonyl adipate, DNA; tris(2-ethylhexyl) phosphate, TEHP) and ion exchanger (potassium tetrakis(4-chlorophenyl)borate, K(TpClPB); potassium tris(nonyloxy)benzenesulfonate, K(TNOBS)), as well as that of the lipophilic cationic additive (tetradecylammonium nitrate, (TDA)NO(3)) and neutral carrier (dibenzo-18-crown-6) presence in membrane. It has been established that plasticizer nature affects K(i,j)(pot) values both when the target and/or foreign ions have non-ionic polar groups capable of specific interaction with plasticizer, and when the only difference consists in the substitution degree of their ionic groups. K(i,j)(pot) values for quaternary alkylammonium cations over primary-tertiary ones change in the following order: TEHP>DBP approximately DNA>o-NPOE. The highest K(i,j)(pot) value change is achieved for the primary-quaternary alkylammonium cation pair, amounting to 3 and 4.7 orders for membranes containing K(TNOBS) and K(TpClPB) as ion exchangers, respectively. In its turn, the ion exchanger influence on the selectivity depends on plasticizer nature, it being maximal for o-NPOE (about 2 orders) and practically non-existent for TEHP. On the whole, as compared to K(TpClPB)-based ISEs, those based on K(TNOBS) show higher selectivity for primary-tertiary alkylammonium cations over quaternary ones. Incorporation of (TDA)NO(3) into membrane causes further improvement of selectivity for primary-tertiary alkylammonium cations in the case of K(TNOBS) only. The maximal total effect of the ion exchanger and lipophilic ionic additive is observed for ISEs with DNA-plasticized membranes and is over 3 orders. The influence of crown ether on the selectivity also depends significantly upon ion exchanger and plasticizer nature. For ISEs with o-NPOE-plasticized membranes the K(i,j)(pot) value changes can be as great as 3 (ion exchanger K(TNOBS)) and even 4.5 (ion exchanger K(TpClPB)) orders. On the contrary, for ISEs with TEHP-plasticized membranes the crown ether effect on the selectivity is unessential. The results obtained are explained by peculiarities of organic ammonium cations solvating by plasticizer and association of cations with ion exchangers.  相似文献   

15.
The synthesis, structure and magnetic properties of the one-dimensional chain compounds [Mn(cyclam)(SO4)]ClO4.H2O (1) and [Mn(cyclam)(HCOO)](CF3SO3)(ClO4) (2) are reported. Cyclam is the cyclic tetradentate ligand 1,4,7,11-tetraazacyclotetradecane. Both chain compounds exhibit antiferromagnetic interactions within the chains. A magnetic ordering phase transition at 5.5 K in (1) is investigated by magnetisation measurements along the three principal crystallographic axes of a single crystal and the results show unambiguously that the ferromagnetic ordering is only taking place along one crystallographic axis. The spin structure of the magnetic ordered phase and the magnitude of the ferromagnetic moment are correlated with the crystal structure and symmetry of the compound.  相似文献   

16.
Five phosphorescent metal-anion radical coordination polymers based on a new anion radical ligand generated by in situ deprotonation of a stable zwitterionic radical are described. The N,O,N-tripodal anion radical ligand links metal cations, which leads to five isostructural coordination polymers, [M(3)(bipo(-.))(4)(L)(2)](n) (M=Cd or Mn, Hbipo(-.)=2,3'-biimidazo[1,2-a]pyridin-2'-one, L=Cl(-), HCOO(-) or SCN(-)). The isostructural coordination polymers exhibit novel one-dimensional spirocycle-like structures. Three isostructural Cd(II) coordination polymers display unusual phosphorescent color changes (blue, yellow, and white) induced by terminal anions. Significantly, the Cd(II) coordination polymer with terminal Cl(-) possesses moderate quantum yield, and shows a bright white-light phosphorescence emission, which is independent of excitation wavelength and can even be excited by visible light. Upon adjusting the metal cation to Mn(II), two isostructural Mn(II) coordination polymers reveal deep-blue-light phosphorescence emissions that are independent of terminal anions. As radical-based coordination polymers, some of them show antiferromagnetic interactions between radical species or radical and metal center.  相似文献   

17.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

18.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

19.
The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to [Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear [Mn(4)O(6)] backbone, to either side of which are attached two [Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting [Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.  相似文献   

20.
The synthesis and magnetic properties of the compound [Mn(22)O(6)(OMe)(14)(O(2)CMe)(16)(tmp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn(3)O(MeCO(2))(6)(HIm)(3)](MeCO(2)) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn(IV), 18 Mn(III), and 2 Mn(II) ions linked by a combination of 6 micro(3)-bridging O(2)(-) ions, 14 micro(3)- and micro(2)-bridging MeO(-) ions, 16 micro-MeCO(2)(-) ligands, and 8 tmp(3)(-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn(3)O(4)] partial cubes and [Mn(3)O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-)(1) at 300 K to 48.3 cm(3) K mol(-)(1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-)(1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-)(1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (DS(z)()(2)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-)(1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule magnet, with a blocking temperature (T(B)) of approximately 1.3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号