首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
to estimate the level of total mercury and methylmercury in Kuala Lumpur residents, 400 hair samples were analysed by neutron activation analysis. Separation of methylmercury from hair samples were carried out prior to neutron activation. The average level of total mercury and methylmercury in hair samples were 3.38 mg.kg-1 (in range of 0.59-18.73 mg.kg-1) and 1.13 mg.kg-1 (in range of 0-4.65 mg.kg-1), respectively. The average percentage ratio of methylmercury to total mercury was 31.15% (in range of 0 to 75.81%). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Two methods, based on hollow fiber liquid–liquid–liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L 1 and 0.4 μg L 1 (as Hg) with precisions (RSDs (%), c = 5 μg L− 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME–GFAAS and HF-LPME–GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L 1 was obtained. Finally, HF-LLLME–GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99–113%. In order to validate the method, HF-LLLME–GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish muscle, and the determined values were in good agreement with the certified values.  相似文献   

3.
An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 μg g−1 and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method’s accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88–95%.  相似文献   

4.
Biomonitoring of mercury contamination of Brazilian Indian population groups living in the Xingu Park, a reservation situated in the Amazonic region, has revealed very high levels of mercury in hair samples as compared to controls. Total mercury was determined by INAA in most of the tribes living in the Park and methylmercury was determined by CVAAS in samples with total mercury above 10 mg/kg. Due to the fact that selenium seems to protect animals against the toxic effects of methylmercury, it was considered also of interest to determine its concentrations in the hair samples with very high mercury levels. Selenium was determined by INAA via the short-lived radionuclide 77mSe (T 1/2 = 17.45 s). The correlations between selenium and mercury concentrations in Brazilian controls and in the Indian population groups are discussed.  相似文献   

5.
A simple method for simultaneous determination of inorganic and total mercury contents in human hair by neutron activation analysis (NAA) has been developed. The method is based on the selective extraction of methylmercury from hair by hydrochloric acid. Thus, the residual phase containing inorganic mercury can be determined by NAA. Further, the methylmercury contents in hair samples are easily calculated by subtracting the inorganic mercury contribution from the total Hg simultaneously given by INAA. Several reference materials of human hair, including IAEA hair RM 085 and 086, Chinese hair RMs GBW 09101 and 07601, were analyzed by this method. Our results show that the method is reliable.  相似文献   

6.
Because of increasing awareness of the potential neurotoxicity of even low levels of organomercury compounds, analytical techniques are required for determination of low concentrations of ethylmercury (EtHg) and methylmercury (MeHg) in biological samples. An accurate and sensitive method has been developed for simultaneous determination of methylmercury and ethylmercury in vaccines and biological samples. MeHg and EtHg were isolated by acid leaching (H2SO4–KBr–CuSO4), extraction of MeHg and EtHg bromides into an organic solvent (CH2Cl2), then back-extraction into Milli-Q water. MeHg and EtHg bromides were derivatized with sodium tetrapropylborate (NaBPr4), collected at room temperature on Tenax, separated by isothermal gas chromatography (GC), pyrolysed, and detected by cold-vapour atomic fluorescence spectrometry (CV AFS). The repeatability of results from the method was approximately 5–10% for EtHg and 5–15% for MeHg. Detection limits achieved were 0.01 ng g−1 for EtHg and MeHg in blood, saliva, and vaccines and 5 ng g−1 for EtHg and MeHg in hair. The method presented has been shown to be suitable for determination of background levels of these contaminants in biological samples and can be used in studies related to the health effects of mercury and its species in man. This work illustrates the possibility of using hair and blood as potential biomarkers of exposure to thiomersal.  相似文献   

7.
M Horvat  A R Byrne 《The Analyst》1992,117(3):665-668
The effects of storage conditions (long-term storage of wet samples in a deep-freeze or thermal cycling), freeze-drying and gamma-irradiation at 1 and 5 Mrad on the stability of methylmercury in some biological samples were investigated. Methylmercury was determined by volatilization separation followed by gas chromatography and by ion-exchange separation of inorganic and organic species followed by measurement by cold vapour atomic absorption spectrometry (CVAAS). Total mercury was determined by CVAAS. Biological samples studied included fish and shellfish tissues, human hair and blood samples and appropriate reference materials. From the preliminary results obtained it can be concluded that fresh and dried fish muscle and fish certified reference materials show good stability with time and against temperature cycling. Shellfish and blood should not be repeatedly frozen and unfrozen otherwise possible losses of methylmercury can occur. Losses of methylmercury of up to 30% from wet mussels occurred on prolonged storage in a deep-freeze. Gamma-irradiation reduced the methylmercury content of the fish and shellfish only for hake (Merluccius merluccius). Further experiments should be carried out to confirm this and to investigate if this effect is species dependent. Apparent losses of methylmercury on freeze-drying of blood need to be reconfirmed on further samples.  相似文献   

8.
A simple and sensitive method has been developed for determination of inorganic and methyl mercury in biological samples by ETAAS. For determination of methyl mercury; it was transferred to toluene phase by acid leaching extraction method. For total mercury after digestion of samples; it was extracted to toluene phase by means of the chelating agent diethyldithiocarbamate. Formation of complex between MeHg and diethyldithiocarbamate enhance the MeHg signal and increases the reproducibility. Furthermore, Pd-DDC was used as modifier for both mercury and methyl mercury determinations. The optimization performance was independently carried out by modifying the parameters such as temperature of mineralization, atomization and gas flow rate for methylmercury and inorganic mercury in ETAAS. The limits of detection were 0.15 and 0.12 μg g−1 for methyl mercury and total mercury, respectively. The repeatability of the measurements of whole procedure were 15.8% for methyl mercury and 16.9% for total mercury determination. The accuracy of the method has been investigated by means of spiking different amounts of methylmercury and inorganic mercury to the samples. The recoveries were found within the range of 88-95% for methyl mercury and 85-92% for total mercury. For determination of total mercury, the method was validated by CVAAS. The obtained results by the present procedure were in good agreement with those of the CVAAS. The proposed method was applied for 30 human permanent healthy teeth (without filling) which significant positive correlations were found among number of amalgam filling and total mercury and MeHg.  相似文献   

9.
本文在前报[1]工作基础上,将气相色谱仪和测汞仪联机测定有机汞的方法,用于人发中甲基汞的测定。根据Birke等人报导[2],人发和血液中只查到甲基汞,未查到乙基汞和更高级的烷基汞;同时本工作所用的人发试样,经白求恩医科大学环境医学研究室分析,除甲基汞外未查到乙基汞。因此本法测得的总有机汞能代表甲基汞。目前尚未见到类似方法的报导。  相似文献   

10.
Ten kilograms of hair obtained from India were used as the basis for two intercomparison materials, one with natural low levels of mercury and methylmercury, and one with an elevated level of methylmercury. The latter was produced by labeling the hair with a solution containing methylmercury. To convert the hair into homogeneous powders, cryogenic milling was utilized. 70% of the final material passed through a 0.075 mm sieve. Subsequent studies were carried out to establish the homogeneity of the materials and the stability of the methylmercury label. The materials will be distributed in an international intercomparison, the results from which will be used to obtain recommended values for total mercury and methylmercury.  相似文献   

11.
An accurate, precise, sensitive and automated non-chromatographic method for methylmercury speciation based on a selective continuous liquid-liquid extraction of methylmercury, into xylene, as bromide and cold mercury vapour generation directly from the organic phase and final ICP-AES mercury detection is proposed. Both separation steps, liquid-liquid and gas-liquid are accomplished in a continuous mode and on line with ICP-AES as detector. The detection limit attained for methylmercury was 4ng·ml–1 (as mercury). The precision of the determination at a concentration level around 20 times the detection limit was +-5%. The proposed methodology has been applied successfully to the speciation of methylmercury and inorganic mercury in spiked sea water and spiked urine samples.  相似文献   

12.
A general analytical strategy for mercury speciation in seafood samples has been proposed to increase sample throughput. This consists of the initial determination of total mercury content, and then mercury speciation using gas chromatography coupled to atomic fluorescence spectroscopy. The appropriate sample treatment for mercury speciation is selected between a method based on aqueous ethylation with sodium tetraethylborate (Approach A: a rapid methodology for samples with methylmercury concentrations between 150 and 2000 ng g?1) and another one based on the determination of organomercury chlorides (Approach B: a much more time‐consuming methodology, applicable to samples with methylmercury at 1.2–200 ng g?1). Both procedures have been used together for the analysis of bivalves and fish samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH3Hg+ was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH3Hg+ was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be ∼95% by comparing the response with traditional SnCl2 chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg2+; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes “green” chemistry. The potential for application to other sample types and analytes is evident.  相似文献   

14.
The study evaluated methylmercury concentrations, the methylmercury to total mercury ratio (%MeHg) and their correlations in ten fish species from different trophic levels. Methylmercury levels in fish studied were in the range of 0.007 to 0.914 µg g?1 wet wt. Muscle tissue of predatory fish contained significantly (p < 0.05) higher content of methylmercury than non-predatory fish. The methylmercury to total mercury ratio ranged from 49.1% to 87.5%, with the highest ratio in predatory fish. This ratio was always higher in muscle tissue compared to the liver tissues, indicating tissue-specific binding and accumulation of methylmercury in the muscle. All the fish species showed strong positive correlation between methylmercury and total mercury levels (R 2> 0.86). Except for long tail tuna and short-bodied mackerel, all fish species showed lower methylmercury levels and estimated weekly intake as compared to the maximum values established by US FDA (of 0.5 µg g?1) and by FAO/WHO (1.5 µg kg?1 bodyweight), respectively. This study showed that the percentage of methylmercury is rather high in fish and fish represents the major source of this toxic mercury form to the local population.  相似文献   

15.
Species-specific stable isotope dilution in combination with gold trap- or gas chromatography (GC)-inductively coupled plasma mass spectrometry (ICP-MS) is reported for the determination of inorganic mercury and methylmercury in diatoms (Chaetoceros curvisetus). The optimum conditions for the separation parameters were established. The isotope dilution analysis was performed using 199Hg-enriched Hg2+ and laboratory-synthesized 201Hg-enriched methylmercury. The absolute detection limits obtained with isotope dilution-ICP-MS were 9 pg for total mercury and 0.6 pg for methylmercury. The relative error of 7 Hg isotopic abundances based on the peak area measurements was better than 2.0% for 20 pg of methylmercury (as Hg) and 250 pg of inorganic mercury. The accuracy of the method was validated with a biological certified reference material. The developed method was then applied to investigate the uptake of inorganic mercury and methylmercury by C. curvisetus. Continuous uptake of inorganic mercury and methylmercury was observed during 5 days of incubation.  相似文献   

16.
Bagheri H  Gholami A 《Talanta》2001,55(6):681-1150
A new, simple and sensitive method for the simultaneous determination of mercury(II) and methylmercury chloride at sub-ng l−1 levels in river waters is described. Inorganic and organic mercury were preconcentrated from fresh water samples simultaneously on a laboratory-made column containing 2-mercaptobenzimidazol loaded on silica gel and then quantitatively eluted with 0.05 M KCN solution and 2.0 M HCl to desorp inorganic and methylmercury species, respectively. After irradiation with an intensive UV source, MeHg+ was decomposed and mercury vapours were generated from inorganic and organic mercury using an acidic SnCl2 solution in a continuous flow system and were subsequently determined with a cold vapour atomic fluorescence (CV-AFS) spectrometer. Detection limits (3σ) were 0.07 and 0.05 ng l−1 (as Hg) for mercury(II) chloride and methylmercury chloride, respectively. Relative standard deviations of method (%R.S.D.) were 8.8 and 10 for inorganic and organomercuric species in the river water, respectively. The analysis of real samples, taken from different rivers, showed that inorganic mercury levels ranged from 4.0±0.6 to 12±1 ng l−1 (as Hg and 95% confidence limit) and methylmercury levels at 0.2±0.02 ng l−1(as Hg).  相似文献   

17.
Sample preparation methods for non-separation cold vapor atomic absorption spectrometry (CVAAS) sequential inorganic mercury speciation in biological certified reference materials (CRMs) were investigated. The methylmercury concentration was calculated as the difference between total and inorganic mercury. Microwave-assisted decomposition method, and three ultrasonic extraction procedures based on acid leaching with HCl and HCOOH and solubilization with TMAH were employed as sample preparation methods. The replacement of a sample decomposition procedure by extraction prior to analysis by CVAAS, as well as the aspect of speciation analysis is discussed. The limits of detection in the sample were determined as 50 and 10 ng L−1 for inorganic and total mercury, which corresponds to absolute detection limits of 40 and 8 ng g−1 for inorganic and total mercury, respectively. The results were in good agreement with the 95% confidence level t-test of the certified values for total and inorganic mercury in the reference materials investigated. From the analysis of the CRMs, it was evident that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. The relative standard deviation was better than 11% for most of the samples.   相似文献   

18.
The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH3Hg+], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L−1 HCl for methylmercury and 0.8 mol L−1 CN for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.  相似文献   

19.
For the determination of total mercury in hair, an amount (25.0 mg) of hair sample was digested with conc. HNO3 (400 microl) at 90 degrees C for 10 min in a 7-ml teflon microreaction vessel. After digestion, the pH of the acidic hair mixture was adjusted to 5.0-6.0 by NaOH and was then passed through a clean-up Sep-Pak C18 cartridge. To the eluate, 2,3-dimercaptopropane-1-sulfonate (DMPS) and sodium acetate buffer (pH = 6.0) were added to form a mercury-DMPS complex. This complex was preconcentrated on two Sep-Pak C18 cartridges in series, and each cartridge was eluted with methanol and adjusted to 2.00 ml. A portion (50 microl) was introduced into a graphite cuvette and then atomized according to a temperature program. The method detection limit (MDL, 3sigma) was 0.064 (microg g(-1)); the calibration graph was linear up to 7.52 microg g(-1). Good accuracies were obtained when testing two human hair certified reference materials (GBW 09101 and BCR-397). Six real samples were analyzed, and the recoveries were 95.8 - 98.2% with a relative standard deviation (RSD, n = 3) < 2.1%. For the determination of methylmercury (CH3Hg+), 25.0 mg of hair sample was extracted with 2.0 mol dm(-3) HCl (1.0 ml) by ultrasonicating for 1 h. The supernatant solution was used for CH3Hg+ analysis and the hair residue was used for the analysis of inorganic mercury (Hg2+). The MDL of CH3Hg+ was 0.068 microg g(-1); the calibration graph was linear up to 6.00 microg g(-1). Six real samples were analyzed, and the recoveries were 96.0-99.2% with RSD (n = 3) < 2.3%. The sum of the concentrations of CH3Hg+ and Hg2+ was very close to that of the total mercury measured with a relative error within 3.6%. The proposed method can be accurately applied to the measurement of CH3Hg+, Hg2+, and total mercury in hair samples.  相似文献   

20.
Several hundred samples of human head hair were analyzed to establish the range and variation of mercury concentration in “normal” people and in persons ingesting organic mercury compounds. Instrumental neutron activation analysis was used. The 77 keV line of197Hg was counted on a Ge(Li) detector. The pattern of concentration variation along hair was shown to be a more reliable criterion for hair individualization than average concentration values. The hair mercury contents of “normal” people in uncontaminated areas were 0.1–4 and 1–12 ppm, respectively. People who had ingested a mercury compound but showed no symptoms had hair mercury concentrations of from a few ppm to 300 ppm. Mild symptoms appeared with a 120–600 ppm hair mercury level, moderate with 200–800 ppm, and severe with 400–1600 ppm. There was no correlation with sex or age, except that infants showed more severe symptoms than expected, and people over 55 had mild or no symptoms with hair mercury levels of 1000 ppm and higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号