首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polarized neutron instruments will occupy about 80% of the Jülich Centre for Neutron Science (JCNS) instrument park. A successful polarized 3He program will be integral to many of these instruments. We have been focusing the developments on spin-exchange optical pumping (SEOP) to polarize the 3He gas in situ. Where possible, in situ polarization using the SEOP method will provide higher time averaged performance of the instruments. Further this allows a custom-built and independent source of polarized 3He to be developed optimized for each instruments demands. In this paper we will: present an argument for the advantages of in situ polarization; describe an in situ polarizer we have constructed, and initial tests of its performance; describe testing of polarization analysis for small angle neutron scattering on biological samples, and our plans for an in situ polarizer for this application.  相似文献   

2.
Polarized neutron spin filters are being developed based on spin-exchange optical pumping. In the present study a high-power diode laser (85 W) was used to excite Rb atoms and the laser linewidth was narrowed using an external cavity. The optics in the external cavity were designed by ray tracing. The ray-trace calculations demonstrated that a doublet lens in front of the laser eliminates aberrations. The maximum spectral peak height in the doublet optics was found to be 25% higher than for a singlet lens.  相似文献   

3.
We measured the neutron beam polarization of the BL05/NOP (Neutron Optics and Physics) beamline at J-PARC with an accuracy of less than 10−3 using polarized 3He gas as a neutron spin analyzer. Precise polarimetry of the neutron beam is necessary to understand the beamline optics as well as for the asymmetry measurements of the neutron beta decay, which are planned in this beamline.  相似文献   

4.
We have begun the development of an in-situ spin-exchange optical pumping (SEOP) system aiming to use it as a neutron spin filter for incident beam polarization at the Japan Proton Accelerator Research Complex (J-PARC). To use it, it is recommended that the optics be adjusted easily, have high stability, and have a small size. In this paper we improved our previous SEOP system aiming to use it in J-PARC and performed a neutron beam test at the JRR-3 NOP beamline to see the performance of the neutron spin filter (NSF). The polarization of the 3He gas reached 73%. This paper gives the present status of the development of in-situ SEOP system in J-PARC.  相似文献   

5.
Polarized 3He neutron spin filters can operate over a wide neutron energy range and provide a large angular acceptance. A compact 3He neutron spin filter system has been developed for the Multi-Axis Crystal Spectrometer at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Sealed 3He cells, polarized by spin-exchange optical pumping, are used as polarizer and analyzer. The polarization of the neutrons incident on the sample is inverted by flipping the polarization of the 3He gas in the polarizer, with only a small effect on the analyzer cells. The cell fabrication process, 3He spin flipper, and the holding magnetic field are discussed and we present the results of a first on-linetest.  相似文献   

6.
As there are no free neutron targets one has to resort to the nuclear targets deuterium or helium. In order to reduce nuclear effects blurring the information on nuclear form factors the technique of double polarization experiments had been developed. Recent experiments at MAMI measuring the electric form factor of the neutron are discussed. In addition, other single and double nucleon knockout experiments are described which support the buildup of a consistent interpretation of nuclear structure in 3He.  相似文献   

7.
Polarized 3He spin-filters are currently employed on a wide range of neutron instruments at the ILL, primarily for diffraction, reflectometry and fundamental physics. A wide range of recent and ongoing improvements are enabling the implementation of this technique for wide-angle polarization analysis for inelastic measurements. These include
• Progress in metastability-exchange optical pumping (MEOP), resulting in on-beam polarization levels of up to 80%.
• 1st generation “Pastis-1” coils for rotating the neutron polarization at the sample position, allowing for “XYZ” polarization analysis.
• 2nd generation “Pastis-2” coils with no blind angles in the equatorial plane.
• Spin-filter cells with glued silicon windows, allowing for wide-angle “banana” cells with very low background scattering.
• Polarization-preserving capillaries for transferring polarized 3He gas into the cell without manual access.
The development of capillary transfer also allows for a completely new way of working with 3He spin-filters: connecting the cells on the instruments directly to the MEOP filling station several tens of meters away and allowing for quasi-continuous operation.  相似文献   

8.
The (129)Xe nuclear spin polarization (P(Xe)) that can be achieved via spin-exchange optical pumping (SEOP) is typically limited at high in-cell xenon densities ([Xe](cell)), due primarily to corresponding reductions in the alkali metal electron spin polarization (e.g. P(Rb)) caused by increased non-spin-conserving Rb-Xe collisions. While demonstrating the utility of volume holographic grating (VHG)-narrowed lasers for Rb/(129)Xe SEOP, we recently reported [P. Nikolaou et al., JMR 197 (2009) 249] an anomalous dependence of the observed P(Xe) on the in-cell xenon partial pressure (p(Xe)), wherein P(Xe) values were abnormally low at decreased p(Xe), peaked at moderate p(Xe) (~300 torr), and remained surprisingly elevated at relatively high p(Xe) values (>1000 torr). Using in situ low-field (129)Xe NMR, it is shown that the above effects result from an unexpected, inverse relationship between the xenon partial pressure and the optimal cell temperature (T(OPT)) for Rb/(129)Xe SEOP. This interdependence appears to result directly from changes in the efficiency of one or more components of the Rb/(129)Xe SEOP process, and can be exploited to achieve improved P(Xe) with relatively high xenon densities measured at high field (including averaged P(Xe) values of ~52%, ~31%, ~22%, and ~11% at 50, 300, 500, and 2000 torr, respectively).  相似文献   

9.
Glass cells play an important role in polarized 3He neutron spin filters. To evaluate the scattering and absorption contribution from glass cells during neutron scattering experiments, we measured small-angle scattering and neutron transmission in GE180 and other glasses. The small-angle neutron scattering measurements revealed that the glasses used for 3He spin filters have acceptably lower scattering: (Q)/=4-7×10−4 cm−1 at Q=0.03-0.12 Å−1. The transmission measurement was performed at J-PARC. Neutron transmission of about 92% through empty GE180 cells was observed over a wide wavelength range 0.014-7.0 Å. To pursue the possibility of being a structural influence on 3He spin relaxation in GE180 glass cells, we performed precise X-ray diffraction measurement using synchrotron radiation at SPring-8. From these measurements, a structural difference was observed among GE180 glasses with different thermal treatments.  相似文献   

10.
We have designed and demonstrated a prototype on-beam spin-exchange optical pumping (SEOP) 3He neutron spin filter (NSF). It is designed as the incident neutron polarizer for spallation neutron sources, where the installation space is limited due to thick radiation shielding. The size of the NSF is roughly 50 cm×50 cm×25 cm including the diode-laser optics with a frequency narrowing external cavity, and a cylindrical 3He cell as large as a diameter of 5 cm and a length of 10 cm can fit. A neutron beam test was performed at the NOP beamline of JRR-3 to see the performance of the NSF.  相似文献   

11.
12.
At the NIST Center for Neutron Research (NCNR), we have applied 3He neutron spin filters (NSFs) to the instruments where 3He NSFs are advantageous, such as thermal triple-axis spectrometry, small-angle neutron scattering, and diffuse reflectometry. We present the status of our development and application of this method, including polarized gas production by spin-exchange optical pumping, magnetostatic cavities for storage of the polarized gas on the beam line, and nuclear magnetic resonance (NMR)-based, on-line monitoring and reversal of the 3He polarization. We present the status of developing user-friendly interfaces incorporated into the instrument software to handle these 3He neutron spin filters while taking data and performing data analysis. Finally we discuss the status of development of a polarization capability on the multi-axis crystal spectrometer, which requires polarization analysis over a 220° angular range.  相似文献   

13.
High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure.  相似文献   

14.
In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only approximately 1 L of hyperpolarized (3)He gas. Diffusion weighting ranges from 0 s/cm(2) to 40 s/cm(2). Results show that the non-Gaussian effects of (3)He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.  相似文献   

15.
We considered the Heisenberg model on the recursive lattices with multi-spin interaction in a strong magnetic field as an approximation of the two-dimensional kagome lattice, as well as hexagonal recursive lattices as an approximation of triangular lattice, for solid 3He. In a strong magnetic field it is possible to approximate the Heisenberg model with the Izing one. Using dynamic approach, we obtain exact recursion relations for partition functions. Diagrams of the magnetization versus external magnetic field with different spin-exchange parameters and temperatures are presented. Magnetization plateaux, bifurcation points, and doublings are obtained.  相似文献   

16.
Optical pumping of helium makes use of the 2 3S–2 3P transition at 1083 nm. We report on a study of this transition in magnetic fields up to 1.5 T. Based on these results, an optical method to measure nuclear polarisation in arbitrary field has been developed. Preliminary results on optical pumping at 0.1 T are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The Ising approximation of the Heisenberg model in a strong magnetic field, with two, three and six spin exchange interactions is studied on a kagome chain. The kagome chain can be considered as an approximation of the third layer of 3He absorbed on the surface of graphite (kagome lattice). By using dynamical approach we have found one- and multi-dimensional mappings (recursion relations) for the partition function. The magnetization diagrams are plotted and they show that the kagome chain is separating into four sublattices with different magnetizations. Magnetization curves of two sublattices exhibit plateaus at zero and 2/3 of the saturation field. The maximal Lyapunov exponent for multi-dimensional mapping is considered and it is shown that near the magnetization plateaus the maximal Lyapunov exponent also exhibits plateaus.  相似文献   

18.
Hyperpolarized 83Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the 83Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched 83Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized 83Kr MRI after krypton inhalation. Different 83Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized 83Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast.  相似文献   

19.
The angular distributions of the 26Mg, 28Si, 30Si(3H, 4He) reactions have been analyzed using the exact finite-range DWBA calculations. The optical model potential is assumed to have the conventional spin-orbit potential. The obtained cross-sections with the spin-orbit potential are not significantly different from those calculated using the phenomenological Woods–Saxon form factors in the forward angle regions. The inclusion of the spin-orbit potential gives the best fit to the data and greatly improves the large angle cross-sections. Different reasonable spectroscopic factors are found to account well for the cross-section magnitudes.  相似文献   

20.
We present numerical calculations of the spin transfer torque resulting in current-induced domain wall motion. Rather than the conventional micromagnetic finite difference or finite element method, we use an atomistic/classical Heisenberg spin model approach, which is well suited to study geometrically confined domain walls. We compute the behaviour of domain walls in a one dimensional chain when currents are injected using adiabatic and non-adiabatic spin torque terms. Our results are compared to analytical calculations and are found to agree very well for small current densities. At larger current densities deviations are observed, which can be attributed to the approximations used in the analytical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号