首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This new crossed beam configuration produces an angularly separated Coherent Anti-Stokes Raman spectrum, eliminating the need for a spectrometer. Since one of the driving laser beams is always linearly opposed to the dye laser, it may also be used as a dye pump and the experiment performed within the dye cavity for efficient laser energy utilization. With this arrangement, a broad bandwidth dye laser produces a several wavenumber resolution spectrum from a small volume with relatively simple alignment. The spectrum is scanned by varying the incidence angle of the probe beam or taken is a single pulse using a fan shaped probe beam.  相似文献   

2.
We describe a self-starting high-power femtosecond laser based on the Cr(4+):Mg(2)SiO(4) crystal that produces 17-nJ pulses of 40-fs duration at 26.5-MHz repetition rate. This low repetition rate is achieved by employment of a one-to-one telescope in the cavity. The pulse energy is five times greater than with a short-resonator laser. To our knowledge, the laser produces the highest energy ever achieved from this type of laser directly from the resonator without cavity dumping or external amplification. We believe that this laser source can be used for many applications, including nonlinear optics, microscopic imaging, and micromachining of silicon and other semiconductor materials.  相似文献   

3.
Robust high‐power narrow‐linewidth lasers at 589 nm are required for sodium laser guide star adaptive optics in astronomy. A high‐power 589 nm laser based on Raman fiber amplifier is reported here, which works in both continuous‐wave and pulsed formats. In the continuous‐wave case, the laser produces more than 50 W output. In the pulsed case, the same laser produces square‐shaped pulses with tunable repetition rate (500 Hz to 10 kHz) and duration (1 ms to 30 μs). The peak power is as high as 84 W and remains constant during the tuning. The laser also emits an adjustable sideband at 1.71 GHz away from the main laser frequency for better sodium excitation. The versatility of the laser offers much flexibility in laser guide star application.  相似文献   

4.
许晓军 《强激光与粒子束》2020,32(1):011007-1-011007-5
激光的本质是微观粒子的有序运动,而热是微观粒子的无序运动,高能激光产生过程中这一对矛盾贯穿始终,可以说高能激光的发展史,就是一部与废热的斗争史。回顾高能激光发展的六十年,剖析高能激光的科学内涵,我们大致将其划分为前后三十年的两个阶段,前一阶段着重解决能用的问题,后一阶段重在解决好用的问题。围绕产热、散热,我们剖析了激光功率、光束质量、效率三者之间的内在关联,简要回顾了各类高能激光器的发展历程,评价了各类高能激光的特色,展望了高能激光未来的发展路径。  相似文献   

5.
A novel design of “laser” is described which produces a modeless output giving a continuous spectral distribution and a continuously variable bandwidth. Efficiencies and bandwidths are obtained comparable to convetional laser pumped dye laser. The device is suitable for studies of laser bandwidth effects in resonant interactions and nonlinear processes using high power pulsed lasers.  相似文献   

6.
The characterization of the laser beam intensity distribution of a highly saturated 46.9-nm soft X-ray laser excited by capillary discharges is reported. The laser produces a total output energy of 300 J/pulse by amplification in plasma channels having lengths up to 0.45 m. A regime of laser amplification, which is almost free from the effect of the refraction defocusing, is experimentally determined. This regime produces a soft X-ray laser beam with an intense sub-milliradiant component. In the longer active medium the laser intensity distribution reaches the divergence of 0.6 mrad, which approaches the limit of diffraction. A comparison of the experimental results with the simulations performed with a ray-tracing code shows that the small divergence of the beam could be attributed to the effect of a weak index waveguiding of the laser beam through the long plasma channels. PACS 42.55.Vc; 42.60.Jf  相似文献   

7.
We demonstrate a multi-wavelength fiber laser based on nonlinear polarization rotation (NPR) in dual-cavity configuration with two output ports. The laser employs a piece of erbium doped fiber (EDF) and semiconductor optical amplifier (SOA) as the gain medium in a separate cavity. By incorporating PCF in the dual cavity the non-linear polarization rotation (NPR) effect is enhanced and thus higher output and more oscillating lasing can be achieved. The laser produces three strong lines with a spacing of 2.40 nm and side mode suppression ratio (SMSR) of more than 10 dB at 1535 nm region. Another output produces 8 lines of optical comb with a spacing of 0.54 at 1570 nm region.  相似文献   

8.
We report on a 2085 nm holmium-doped silica fiber laser passively mode-locked by semiconductor saturable absorber mirror and carbon nanotube absorber. The laser, pumped by a 1.16 μm semiconductor disk laser, produces 890 femtosecond pulses with the average power of 46 mW and the repetition rate of 15.7 MHz.  相似文献   

9.
A diode-end-pumped Nd:YAG laser is passively Q-switched by using Cr4+:YAG as saturable absorber. When CW pumped with a laser diode which the maximum power is 550 mW, the laser produces pulses of 24 ns duration at 1064 nm, with an energy of 26 μJ.  相似文献   

10.
The self-focusing of a laser pulse through a tunnel ionizing gas (helium) has been studied in both non-relativistic and relativistic regimes, relaxing the near-axis approximation. In the non-relativistic regime, the laser pulse produces multiple ionization of the gas and faces strong defocusing due to the steep radial density gradient caused by the same. The uneven defocusing of paraxial and marginal rays leads to a beam acquiring a ring shaped intensity distribution. In the relativistic regime, the laser pulse produces fully ionized plasma within a few wave periods, subsequently the relativistic mass effect and the ponderomotive force induced electron cavitation cause periodic self-focusing. PACS 52.38.Hb; 42.65.Jx  相似文献   

11.
Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20×20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60×60 cm aperture, and amplifies the laser beam up to 5 W. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kT Marx generator that produces a 670 kV, 540 kA, 240 ns Bat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments  相似文献   

12.
We have demonstrated what we believe to be the first mid-infrared optical parametric oscillator (OPO) pumped directly by a pulsed Tm-doped fiber laser. The Tm-fiber pump laser produces 30 ns pulses with a repetition rate of 30 kHz at a wavelength of 2 microm. The ZnGeP2 (ZGP) OPO produces 20 ns mid-IR pulses in the 3.4-3.9 microm and 4.1-4.7 microm spectral regions simultaneously. More than 658 mW of mid-IR output power has been generated with a total OPO slope efficiency greater than 35%.  相似文献   

13.
Two-photon absorption provided by a semiconductor mirror structure is shown to reduce amplitude fluctuations significantly in a harmonically mo e-locked fiber ring laser. Pulse dropouts are eliminated in a laser that produces picosecond pulses at a repetition rate of 2 GHz.  相似文献   

14.
A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.  相似文献   

15.
We have demonstrated an all-diode-pumped Nd:YLF laser amplifier that produces 20.8 mJ pulses of 12.9 ps duration at 10 Hz repetition rate. The laser system consists of a mode-locking oscillator, a regenerative amplifier and a five-pass amplifier. The small-angle off-axis five-pass configuration combining with the gradual expansion of the laser beam cross section makes the amplifier compact and effective.  相似文献   

16.
Lim H  Ilday FO  Wise FW 《Optics letters》2003,28(8):660-662
We report a mode-locked ytterbium fiber laser that generates femtosecond pulses with energies as large as 2.2 nJ. This represents a 20-fold improvement in pulse energy compared with that of previously reported femtosecond Yb fiber lasers. The laser produces pulses as short as 52 fs, which are to our knowledge the shortest pulses to date from a Yb fiber laser. The laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability.  相似文献   

17.
The interaction between femtosecond laser radiation in the filamentation mode and lithium fluoride optical ceramics is investigated experimentally. It is shown that irradiating optical ceramics based on lithium fluoride with femtosecond laser pulses in the near infrared spectral region effectively produces luminescence centers characteristic of radiation-colored single crystals.  相似文献   

18.
Yang JZ  Walker BC 《Optics letters》2001,26(7):453-455
We present an efficient, ultrafast regenerate amplifier that increases the energy of a laser pulse from 300 pJ to 6 mJ and produces average powers of as much as 9 W in a TEM(00) spatial mode. As an ultrafast amplifier, the system produces 4-mJ pulses with 0.09 TW of peak power.  相似文献   

19.
王丽  丁婷  邱建荣 《物理》2007,36(1):63-67
飞秒激光具有超快和超强(聚焦后局域电场达到10^10V/cm,相当于氢原子的库仑场强)的特点,因此它与材料发生相互作用时会产生多光子吸收、多光子电离、自聚焦等非线性效应.文章介绍最近发现的单光束飞秒激光在物质内部诱导自组装纳米光栅,沿光束传播方向排列成行的纳米周期孔洞结构以及材料表面诱导纳米周期结构等新现象,并对这些现象的机理作了阐述.  相似文献   

20.
Using SF6 glass plates as intracavity Kerr lenses and double-prism pairs for dispersion compensation, we achieve tunable femtosecond passive mode locking in rhodamine 590 (R6G) and 4-dicyanomethylene-2-methyl-16-p-dimethylaminostyryl-4H-pyran (DCM) dye lasers. The R6G laser produces transform limited 240–500 fs pulses between 577 and 606 nm, and the DCM laser produces 150 fs transform-limited pulses between 650 and 671 nm. We use dilute intracavity saturable-absorber jets to make the mode locking self-starting. Characteristics of the pulses and the stability regions of the lasers agree with general theories of passive mode locking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号