首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Squashed entanglement (Christandl and Winter in J. Math. Phys. 45(3):829–840, 2004) is a monogamous entanglement measure, which implies that highly extendible states have small value of the squashed entanglement. Here, invoking a recent inequality for the quantum conditional mutual information (Fawzi and Renner in Commun. Math. Phys. 340(2):575–611, 2015) greatly extended and simplified in various work since, we show the converse, that a small value of squashed entanglement implies that the state is close to a highly extendible state. As a corollary, we establish an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Commun. Math. Phys. 306:805–830, 2011). We briefly discuss the previous and subsequent history of the Fawzi–Renner bound and related conjectures, and close by advertising a potentially far-reaching generalization to universal and functorial recovery maps for the monotonicity of the relative entropy.  相似文献   

2.
Quantum coherence measures the correlation between different measurement results in a single-system, while entanglement and quantum discord measure the correlation among different subsystems in a multipartite system. In this paper, we focus on the relative entropy form of them, and obtain three new properties of them as follows: 1) General forms of maximally coherent states for the relative entropy coherence, 2) Linear monogamy of the relative entropy entanglement, and 3) Subadditivity of quantum discord. Here, the linear monogamy is defined as there is a small constant as the upper bound on the sum of the relative entropy entanglement in subsystems.  相似文献   

3.
We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. In stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein’s Lemma, giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.  相似文献   

4.
We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki–Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, ER, and its regularization \({E_R^{\infty}}\), as well as of the entanglement of formation, EF. Using a novel “quantum coupling” of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, \({E_C=E_F^{\infty}}\). Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.  相似文献   

5.
Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled.  相似文献   

6.
Entanglement irreversibility from quantum discord and quantum deficit   总被引:1,自引:0,他引:1  
We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.  相似文献   

7.
Squashed entanglement is a promising entanglement measure that can be generalized to multipartite case, and it has all of the desirable properties for a good entanglement measure. In this paper we present computable lower bounds to evaluate the multipartite squashed entanglement. We also derive some inequalities relating the squashed entanglement to other entanglement measures.  相似文献   

8.
逯怀新  赵博 《中国物理》2006,15(9):1914-1918
In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres--Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example, the relative entanglement for a two-mode squeezed thermal state has been obtained.  相似文献   

9.
We study the loss of entanglement of a bipartite state subjected to discarding or measurement of one qubit. Examining behavior of different entanglement measures, we find that entanglement of formation, entanglement cost, logarithmic negativity, and one-way distillable entanglement are lockable measures in that they can decrease arbitrarily after measuring one qubit. We prove that any convex and asymptotically noncontinuous measure is lockable. As a consequence, all the convex-roof measures can be locked. The relative entropy of entanglement is shown to be a nonlockable measure.  相似文献   

10.
Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback–Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki’s quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz’ conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for \(\alpha \in (\frac{1}{2}, \infty )\) and strictly smaller for \(\alpha \in [0,\frac{1}{2})\). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for \(\alpha < \frac{1}{2}\). Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.  相似文献   

11.
De-Chao Li 《Physics letters. A》2009,373(40):3610-3613
Based on a new set of entanglement monotones of two-qubit pure states, we give sufficient and necessary conditions that one two-qubit mixed state is transformed into another one by local operations and classical communication (LOCC). This result can be viewed as a generalization of Nielsen's theorem Nielsen (1999) [1]. However, we find that it is more difficult to manipulate the entanglement transformation between single copy of two-qubit mixed states than to do between single copy of two-qubit pure ones.  相似文献   

12.
We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all nondistillable entangled states. In this way we solve a long standing problem of how "real" is entanglement of bound entangled states. Using the new inequality we also prove the impossibility of local cloning of a known entangled state.  相似文献   

13.
Given many independent and identically-distributed (i.i.d.) copies of a quantum system described either by the state ρ or σ (called null and alternative hypotheses, respectively), what is the optimal measurement to learn the identity of the true state? In asymmetric hypothesis testing one is interested in minimizing the probability of mistakenly identifying ρ instead of σ, while requiring that the probability that σ is identified in the place of ρ is bounded by a small fixed number. Quantum Stein’s Lemma identifies the asymptotic exponential rate at which the specified error probability tends to zero as the quantum relative entropy of ρ and σ. We present a generalization of quantum Stein’s Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein’s Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.  相似文献   

14.
Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coherent states for two-qubit pure and mixed states. we find a link to some entanglement measures through some new parameters (amplitudes of coherent states). Conditions for maximal entanglement and separability are then established for both pure and mixed states. Finally, we analyze and compare the violation of Bell inequality for a class of mixed states with the degree of
entanglement by applying the formalism of Horodecki et al.  相似文献   

15.
We investigate the minimum entanglement cost of the deterministic implementation of two-qubit controlled-unitary operations using local operations and classical communication (LOCC). We show that any such operation can be implemented by a three-turn LOCC protocol, which requires at least 1 ebit of entanglement when the resource is given by a bipartite entangled state with Schmidt number 2. Our result implies that there is a gap between the minimum entanglement cost and the entangling power of controlled-unitary operations. This gap arises due to the requirement of implementing the operations while oblivious to the identity of the inputs.  相似文献   

16.
We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070–1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070–1091, 1999).  相似文献   

17.
Based on a new measure of entanglement for finite-dimensional bi-particle pure states, we give sufficient and necessary conditions that a bi-particle mixed state ρ can be transformed into another mixed state σ by local operations and classical communication (LOCC). This result can be regarded as a generalization of Nielsen’s theorem (Nielsen, Phys. Rev. Lett. 83:436, 1999). However, we find that it is more difficult to determine the entanglement transformations between mixed states than to do between pure ones.  相似文献   

18.
We derive a strengthened monotonicity inequality for quantum relative entropy by employing properties of \({\alpha}\)-Rényi relative entropy. We develop a unifying treatment toward the improvement of some quantum entropy inequalities. In particular, an emphasis is put on a lower bound of quantum conditional mutual information (QCMI) as it gives a Pinsker-like lower bound for the QCMI. We also give some improved entropy inequalities based on Rényi relative entropy. The inequalities obtained, thus, extend some well-known ones. We also obtain a condition under which a tripartite operator becomes a Markov state. As a by-product we provide some trace inequalities of operators, which are of independent interest.  相似文献   

19.
曾可  方卯发 《中国物理》2005,14(10):2009-2013
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole--dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms--field, atom--atom, and atom--field can be prepared via two two-level atoms interacting with a single-mode vacuum field.  相似文献   

20.
Information, relative entropy of entanglement, and irreversibility   总被引:1,自引:0,他引:1  
Previously proposed measures of entanglement, such as entanglement of formation and assistance, are shown to be special cases of the relative entropy of entanglement. The difference between these measures for an ensemble of mixed states is shown to depend on the availability of classical information about particular members of the ensemble. Based on this, relations between relative entropy of entanglement and mutual information are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号