首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A novel simplified method for synthesis of surface-enhanced Raman scattering tags has been reported. This synthesis method is based on reverse micelle technique using Igepal CO-520 as a surfactant and the mixed solution of silver nitrate and rhodamine dyes with isothiocyanate group as water pool followed by hydrazine hydrate reduction and TEOS polymerization leading to the formation of silica layer surrounding the silver core. Compared to the method reported in literature, the proposed methodology eliminates the necessity of vitrophilic pretreatment and makes it possible to complete all different processes including the preparation of silver nanoparticles, the conjugation of dye molecules and the formation of silica shell in the microreactor. The nanoparticle-based surface-enhanced Raman tags obtained are composed of silver core conjugated with rhodamine dyes and an encasing silica shell. Both the dyes themselves and the Ag/SiO2 core-shell nanoparticles without the encapsulation of dyes exhibit no Raman signals. However, the Ag/SiO2 core-shell nanoparticles exhibit strong Raman signals when encapsulated with these dyes. This is due to the appearance of fluorescence quenching and surface-enhanced Raman scattering effect resulting from the conjugation of dyes and silver core. The Raman tags were characterized using transmission electron microscopy (TEM), UV-visible absorption spectrometry, and Raman spectrometry.  相似文献   

2.
We report an impregnation technique for immobilization of silver(I) gelatin complex on silica gel. Subsequent UV exposure of the dry impregnated silica gel deposited silver nanoparticles on the solid matrix. Conventional techniques (UV-visible spectroscopy, TEM, EDAX, and thermal analysis) have been used to identify and characterize silver particles on silica surfaces. The photoproduced silver particles have shown unique SERS activity that authenticates the presence of silver nanoclusters in the silica matrix. Hence, the surface of the silica matrix remains SERS-active for months. This surface activity of the silica matrix inspired us to successfully study the catalytic reduction of nitro-compounds in aqueous, organic, and three different micellar media. Different thermodynamic parameters for the reduction processes have also been evaluated. Catalytic activity of the particles in micelles is explained in the light of hydrophobic and electrostatic interactions between the substrate and the micelles.  相似文献   

3.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

4.
Composite poly(ethylene terephthalate) track membranes containing immobilized silver nanoparticles with the aim of using them for surface-enhanced Raman scattering spectroscopy have been obtained and studied. A dispersion of negatively charged silver nanoparticles has been synthesizes by the method of pulsed electrical discharge between silver electrodes immersed in distilled water. To ensure the electrostatic deposition of nanoparticles onto the track membrane surface, it has been modified with polyethyleneimine. The composition and morphology of the surface of the obtained composite membranes have been studied by X-ray photoelectron spectroscopy and scanning electron microscopy. Aggregation of nanoparticles on the surface has been analyzed. The coefficient of Raman-scattering enhancement has been determined by the example of rhodamine 6G molecules adsorbed on a membrane with immobilized silver nanoparticles.  相似文献   

5.
A variety of Ag nanoparticles/oxide mesoporous films with templated silica, titania, and zirconia was synthesized by sol–gel method at glass, aluminum, and silicon substrates using metal alkoxides (tetraethoxysilane, titanium tetraisopropoxide, and zirconium tetrapropoxide) and AgNO3 as precursors of oxide films and Ag nanoparticles, respectively, and Pluronic P123 as a template agent. Oxide films alone and Ag/oxide composites were characterized using hexane adsorption, X-ray diffraction (XRD), Raman and ultraviolet (UV)/vis spectroscopies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The distribution of Ag nanoparticles within the films, their sizes, intensity, and position of surface plasmon resonance (SPR) absorbance band at λ = 400 nm, as well as the textural and structural characteristics of whole films depend on treatment temperature, types of substrates and oxide matrices, oxide crystallization, and Ag content. Ag nanoparticles form preferably on the outer surface of the films under lower sintering temperatures if the amount of loaded silver is low. Oxide crystallization (e.g., TiO2) promotes silver embedding into the outer film layer. At higher silver content (≥10 at.%) and higher calcination temperature (873 K), silver nanoparticles could be entrapped more uniformly along the film profile because of more intensive evaporation of silver droplets from the outer surface of the films on heating.  相似文献   

6.
3 D highly ordered silver nanoparticles(AgNPs) coated silica photonic crystal beads(Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering(SERS) substrate.The monodisperse and size-controlled SPCBs were prepared via self-assembly of silica nanoparticles process using a simple microfluidic device.Then the Ag/SPCBs were easily obtained by in situ growth of AgNPs onto the NH2-modified SPCBs.Field emitting scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDX) were used to characterize the Ag/SPCBs.The effect of silica nanoparticle size and AgNO3 concentration on the SERS performance of the resultant Ag/SPCBs substrate were discussed in detail.The results indicate that the Ag/SPCBs have highest SERS signals when silica nanoparticle size is250 nm and AgNO3 concentration is 0.8 mg/mL.Using malachite green(MG) as model analyte,the Ag/SPCBs substrate displayed a high sensitivity and a wide linear range for MG.The well-designed Ag/SPCBs show high uniformity and excellent reproducibility,and can be used as an effective SERS substrate for sensitive assay application.  相似文献   

7.
A new type of encoded bead, which uses surface-enhanced Raman scattering (SERS), is described for multiplex immunoassays. Silver nanoparticles were embedded in sulfonated polystyrene (PS) beads via a polyol method, and they were used as SERS-active substrates. Raman-label organic compounds such as 4-methylbenzenethiol (4-MT), 2-naphthalenethiol (2-NT), and benzenethiol (BT) were then adsorbed onto the silver nanoparticles in the sulfonated PS bead. Although only three kinds of encoding have been demonstrated here, various combinations of these Raman-label organic compounds have the potential to give a large number of tags. The Raman-label-incorporated particles were then coated with a silica shell using tetraethoxyorthosilicate (TEOS) for chemical stability and biocompatibility. The resulting beads showed unique and intense Raman signals for the labeled organic compounds. We demonstrated that SERS-encoded beads could be used for multiplex detection with a model using streptavidin and p53. In our system, the binding event of target molecules and the type of ligand can be simultaneously recognized by Raman spectroscopy using a single laser-line excitation (514.5 nm).  相似文献   

8.
A novel colloidal approach toward semiconductor/metal nanocomposites is presented. Organic-soluble anatase TiO(2) nanorods are used for the first time to stabilize Ag nanoparticles in optically clear nonpolar solutions in the absence of specific ligands for silver. Metallic silver is generated upon UV illumination of deaerated TiO(2) solutions containing AgNO(3). The Ag nanoparticles can be obtained in different size-morphological regimes as a function of the irradiation time, due to light-induced photofragmentation and ripening processes. A mechanism for the colloidal stabilization of the silver nanoparticles is tentatively suggested, which regards the TiO(2) nanorods as inorganic stabilizers, thus acting in the same manner as conventional surfactant molecules. The proposed photocatalytic approach offers a convenient method for producing TiO(2)/Ag nanocomposite systems with a certain control over the metal particle size without the use of surfactants and/or additives. Stable colloidal TiO(2)-nanorod-stabilized Ag nanoparticles can be potentially available for a number of applications that require "clean" metal surfaces, such as homogeneous organic catalysis, photocatalysis, and sensing devices.  相似文献   

9.
Ag0 and Ag(I) nanoparticles are immobilized on the surface of a macroporous silica and amino silica. The adsorption kinetics of a basic dye, methylene blue (MB), from aqueous solutions and the adsorption isotherms of alkyne phenylacetylene from an octane solution are measured. The dependence of the rate constants of MB adsorption on the conditions of immobilization and silver reduction is considered. Silica containing immobilized Ag(I) is shown to have a high adsorption activity with respect to phenyl acetylene. By gas chromatography, it is shown that silver-modified silica has a higher selectivity with respect to alkenes. The reduction of silver on the silica surface and the complexation of silver ions with aminopropyl groups of amino silica lead to a significant decrease in the selectivity of composites.  相似文献   

10.
何琼平  左永  许婷婷  徐瑞  宋吉明 《化学通报》2017,80(11):1043-1048
采用Schlenk line技术,通过一种简单的硒源热注射的方法合成了Cu_2SnSe_3(CTSe)纳米晶,同时采用胶体法得到了单分散性极好的、粒径为4nm左右的Ag纳米颗粒(Ag NPs),之后通过简单的滴加法向CTSe纳米晶基质中掺入了特定比例的Ag NPs,得到CTSe-Ag纳米复合物。通过X射线粉末衍射、透射电镜、高分辨透射电镜、红外光谱和热重分析等表征了样品的组成、结构和形貌。同时对合成样品的热电性质进行了研究,相关的测试结果表明,以CTSe为基体掺杂AgNPs的样品中,CTSe-1(mol)%Ag具有最佳的热电优值(ZT=0.23,655K),相较纯相CTSe(ZT=0.18,655K)提高了27%。  相似文献   

11.
The work presents a novel surface-enhanced Raman scattering (SERS)-active surface prepared by electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite. The formation of Ag nanoparticles in MWCNT–ACS nanocomposite was investigated by scanning electron microscopy. It shows that Ag nanoparticles with a diameter of about 100–200 nm in the MWCNT–ACS nanocomposite and some Ag nanoparticles aggregated to form interconnected aggregates. The Ag–MWCNT–ACS-coated indium tin oxide substrate has a considerable effect on the Raman spectra with improvements of more than four times of magnitude as compared with the Ag-coated indium tin oxide substrate. The present methodology demonstrates that the composite composed of Ag, MWCNT, and ACS is suitable for potential plasmonic devices.  相似文献   

12.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

13.
本文利用表面增强拉曼光谱研究了增感染料1556、798在银电极上的吸附,通过比较染料的固体拉曼光谱和染料的表面增强光谱,我们发现两种染料在银电极表面的吸附行为不完全相同,吸附时染料分子的平面基本上与电极表面相垂直。  相似文献   

14.
Gold and silver electromagnetic nanoresonators covered by a thin layer of platinum are often used to study adsorption of various molecules on “model platinum surfaces” with surface-enhanced Raman scattering (SERS) spectroscopy. In this contribution spectra of pyridine adsorbed on films formed from core–shell Ag@Pt and Ag@Ag–Pt nanoparticles and pure Pt or Ag nanoparticles were measured using a confocal Raman microscope. The SERS spectra of pyridine adsorbed on alloy Ag@Ag–Pt nanoparticles could not be obtained as a linear combination of spectra measured on pure Ag and Pt surfaces. In other words, for silver electromagnetic nanoresonators covered by platinum there is no simple correlation between the “quality” of the deposited Pt layer and the relative intensity of SERS bands characteristic for adsorbate interacting with silver. The SERS spectra accumulated from various places of a film formed from Ag@Pt or Ag@Ag–Pt nanoclusters may differ significantly. Using Ag@Pt nanoparticles with practically negligible amount of Ag on the surface (as per the stripping measurement), it is possible to record SERS spectrum in which the contribution characteristic for pyridine adsorbed on the Ag surface is well visible. It means that, even for macroscopic samples of core–shell Ag–Pt nanoparticles, averaging of many spectra measured at various locations of the sample should be carried out to characterize reliably their properties.  相似文献   

15.
This paper describes the use of methoxy-poly(ethylene glycol) silane (MPEG-sil) as a linker molecule for the synthesis of silica-coated nanoparticles by the St?ber method. While short alkane chain-based siloxanes including (acryloxypropyl)trimethoxysilane and 3-methacryloxypropyl-trimethoxysilane are popular molecules used in surface modification, they are not efficient for the silica coating of nanoparticles synthesized from organic solvents containing long carbon chain carboxylic acids or amines as capping agents. Here, we report the utilization of MPEG-sil to bridge this gap. Our approach is based on a two-phase system, in which ligand exchange takes place in a hydrophobic environment and the surface modification with silica is conducted in an ethanol-water mixture. Our results show that this two-phased approach was effective to coat monodisperse Fe2O3 nanoparticles capped with oleic acid and Ag nanoparticles capped with oleylamine with uniform SiO2 shells. The process was also demonstrated for double-shell nanostructures to produce SiO2-coated Pt@Fe2O3 core-shell nanoparticles. The results described in this work represent a new approach for the surface modification with silica coating of monodisperse nanoparticles synthesized from nonhydrolytic solutions and can potentially have a broad ramification in the development of water-dispersible nanoparticles for biological applications.  相似文献   

16.
Stable nanoparticle colloids of silver were obtained by irradiation of aqueous-alcoholic solutions of AgNO3 in the presence of mesoporous SiO2 powder and films modified with benzophenone (BP/SiO2). Colloidal solutions of Ludox silica were used to stabilize the photochemically produced nanoparticles of silver in solution. Formation of nanoparticles of Ag on the surface of mesoporous silica occurred on irradiation of SiO2 modified with silver ions (Ag+/SiO2) in the presence of benzophenone solution.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 100–104, March–April, 2005.  相似文献   

17.
A new type of chiral matrix based on silver–thiocholesterol hybrid nanosystems adsorbed on silica gel has been proposed. The molar ratio of stabilized thiocholesterol (L) ligand and silver (Ag) was found to have little effect on the size of the resulting silver nanoparticles (SNPs). The average diameter of SNPs was 2.7 ± 0.4, 2.2 ± 0.4, and 2.1 ± 0.6 nm upon the ratios Ag: L = 1: 5, Ag: L = 1: 2, and Ag: L = 1: 0.5, respectively. The resulting chiral matrices possess enantioselectivity relative to the 1,1’-binaphthyl-2,2’-diamine (BNDA) and trifluoroanthranyl ethanol (TFAE) optical isomers. The TFAE optical isomers were successfully separated using thin layer chromatography (α = 1.56).  相似文献   

18.
Raman scattering measurements were conducted for 4-aminobenzenethiol (4-ABT) assembled on powdered copper substrates. Initially, very weak Raman peaks were detected, but upon attaching Ag nanoparticles probably via NH2 groups onto 4-ABT/Cu, distinct Raman spectra were observed. Considering the fact that no Raman peak was identified when Ag nanoparticles were adsorbed on 4-aminophenyl-derivatized silane monolayers assembled on silica powders, the Raman spectra observed for Ag@4-ABT/Cu should be surface-enhanced Raman scattering (SERS) spectra, occurring by an electromagnetic coupling of the localized surface plasmon of Ag nanoparticles with the surface plasmon polariton of Cu powders. The extra enhancement factor attainable by the attachment of a single Ag nanoparticle is estimated to be as large as 1.4 x 10(5) in the case when 632.8-nm radiation is used as the excitation source. When Au nanoparticles were attached onto 4-ABT/Cu, at least an order of magnitude weaker Raman spectra were obtained at all excitation wavelengths, however, indicating that the Au-to-Cu coupling should be far less effective than the Ag-to-Cu coupling for the induction of SERS.  相似文献   

19.
Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS).  相似文献   

20.
Ag-doped ZnO nanoparticles (Zn1?xAgxO; where x = 0.00–0.05) were synthesized by chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and the measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge after Ag doping. The band gap values of as prepared undoped and doped with silver samples were found to decrease with increase in temperature from 300 to 800 °C. Photocatalytic activities of ZnO and Ag doped ZnO were evaluated by irradiating the sample solution to ultraviolet light by taking methylene blue as organic dye. The experiment demonstrated that the photo-degradation efficiency of 1 mol% Ag-doped ZnO was significantly higher than that of undoped and 2–5 mol% Ag doped ZnO under ultraviolet light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号