首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 56 毫秒
1.
针对高光谱图像相邻波段之间具有强光谱相关性的特点,为了提高高光谱图像压缩感知的重构效果,本文提出一种利用边缘信息设计动态测量率的压缩感知算法。首先,通过随机投影的分块压缩感知方法对每个图像块以固定测量率采样,重构出单波段图像作为其他波段的先验信息,并对其提取出图像边缘区域;然后,根据每个图像块边缘信息的丰富程度来自适应分配测量值。在固定总测量数的前提下,对不同图像块分配不同的测量次数。最后,利用分配好的测量次数对其余波段进行采集和重构。仿真结果表明,在相同总测量数情况下,本文提出的动态测量算法重构出的高光谱图像质量(PSNR)与传统固定测量压缩感知策略相比提高了1~4 dB,相比较下的重构时间也减少,在成功重构高光谱图像的基础上更增强了细节处的图像质量。  相似文献   

2.
基于独立分量分析的高光谱图像压缩   总被引:5,自引:4,他引:5  
在对原始数据进行虚拟维数估计的基础上,提出了一种基于最大距离端元提取+独立分量分析(Independent Component Analysis,ICA)的高光谱图像有损压缩方案.该方案首先应用最大距离端元抽取法提取高光谱数据各端元矢量,然后用快速独立分量分析生成独立分量,最后使用2维分层树集合分裂(Set Partitioning In Hierarchical Trees,SPIHT)算法对各独立分量图进行编码.计算机仿真结果证明,该算法在取得高压缩率的同时,能很好地保持数据的谱特征,是一种高效的三维数据压缩方法.  相似文献   

3.
针对液晶可调滤波片高光谱成像系统记录动态场景的成像特点,提出一种图-谱结合的压缩感知高光谱视频图像复原方法。首先,通过前景目标检测获得运动前景目标的高光谱图像,实现运动前景目标与背景区域分离,并根据前景目标检测结果将背景区域划分为运动区域(被前景目标遮挡区域)与静止区域(未被前景目标遮挡区域)。然后,基于高光谱图像空间维、光谱维相关性,对静止区域进行字典学习获得稀疏先验信息,结合压缩感知理论用于运动区域恢复,得到完整的背景区域高光谱图像。最后,将运动前景目标高光谱图像与背景区域高光谱图像相结合,得到高光谱视频图像。实验结果表明:本文提出的高光谱视频图像复原方法在峰值信噪比和视觉效果上都要优于现有算法,峰值信噪比平均提高5 d B以上。  相似文献   

4.
压缩感知高光谱计算成像技术是当前高光谱计算成像领域的研究热点之一,其能够在保持系统元器件物理特性不变的前提下,有效地提升成像质量。本文概述了高光谱计算成像的研究背景和基本概念,详细介绍了压缩感知高光谱计算成像系统的发展现状,重点阐述了本团队提出的基于空-谱编码的压缩感知高光谱计算成像技术,并对其系统组成、数理模型以及最新进展进行了说明。通过总结压缩感知高光谱计算成像的背景知识以及空-谱编码压缩感知高光谱计算成像的研究工作,力求为科研人员探索压缩感知高光谱计算成像新体制带来新的思路,促进高光谱计算成像技术的发展。  相似文献   

5.
基于谱间DPCM和整数小波变换的超光谱图像无损压缩   总被引:1,自引:1,他引:1  
吴冬梅  王军  张海宁 《光子学报》2008,37(1):156-159
分析了干涉成像光谱仪所获取图像的谱间和空间相关性,提出了一种混合无损压缩方案.首先进行谱间DPCM预测,再对残差图像采用整数小波变换,最后对小波系数进行二值自适应算术编码.实验结果表明,该算法可实现无损压缩,压缩比平均可达2.018,较二维整数小波变换算法提高40.3%.并且算法复杂度较低,只有加减和移位运算,易于硬件实现.  相似文献   

6.
为了提高高光谱图像的空间分辨率,提出了一种基于GoogLeNet和空间谱变换的高光谱图像超分辨率(SR)方法.设计出遥感图像的光谱SR框架,对图像中不同反射光谱进行提取;采用GoogLeNet的稀疏编码对粗像素光谱进行放大,并投影到高分辨率字典上,将潜在SR表示进行反转,以获得超分辨光谱;为了提高图像重构的保真度,利用...  相似文献   

7.
基于谱聚类与类间可分性因子的高光谱波段选择   总被引:1,自引:0,他引:1  
随着遥感技术和成像光谱仪的发展,高光谱遥感图像的分辨率不断提高,其庞大的数据量在提高其遥感探测能力的同时,也给分析和处理带来了很大的困难。高光谱波段选择可以有效减少数据冗余,提高分类识别精度和处理效率。因此如何从多达数百个波段的高光谱图像中选择出具有较好分类识别能力的波段组合是亟待解决的问题。针对上述问题,采用基于图论的谱聚类算法,将原始高光谱图像中的波段作为待聚类的数据点,利用互信息描述两两波段间的相似度,生成相似度矩阵。再根据图谱划分理论,将相似度矩阵生成的非规范化图拉普拉斯矩阵进行谱分解,得到类间相似度小且类内相似度大的类簇;然后根据地物类型计算各波段的类间可分性因子,将其作为类簇内进一步选择代表性波段的参考指标,达到降维的目的;最后通过支持向量机与最小距离分类方法对波段选择后的图像分类。该方法区别于传统的无监督聚类方法,采用基于图论的谱聚类算法,并根据先验知识计算类间可分性因子来选择波段。通过与自适应波段选择算法和基于自动子空间划分的波段指数算法的对比实验,结果表明:两组实验当聚类数目达到相对最佳时,该波段选择方法支持向量机图像总分类精度达到94.08%和94.24%以上,最小距离分类图像总分类精度达到87.98%和89.09%以上,有效保留了光谱信息,提高了分类精度。  相似文献   

8.
高光谱遥感图像的小波去噪方法   总被引:2,自引:0,他引:2  
高光谱遥感图像是由二维空间信息和一维光谱信息组成的三维数据。普通的去噪方式通常是分别对空间信息或光谱信息进行去噪,其主要缺点是忽视了高光谱图像强烈的谱间相关性和图谱合一的特点。针对这些特点,文章提出一种基于小波变换的高光谱遥感图像去噪方法。该方法对各波段高光谱图像逐一进行二维小波变换,根据含噪声大的波段与噪声小的波段的波长关系,对小噪声波段的高频系数加权求和,代替噪声大的波段的高频系数,通过小波逆变换得到去噪后的重构图像。该方法运算速度快,能有效地降低噪声。对机载可见红外成像光谱仪数据(AVIRIS)实验表明,与经典的BayesShrink图像去噪方法相比,方法重构图像的信噪比(SNR)高出3.8~10.6 db,节省运算时间一半以上。  相似文献   

9.
基于方向角预测三维小波变换的干涉多光谱图像压缩   总被引:1,自引:2,他引:1  
李云松  马静  吴成柯 《光学学报》2008,28(12):2281-2287
根据大孔径静态干涉多光谱图像的成像特点,提出一种基于方向角预测的三维小波变换.这种三维小波变换的新颖之处在于它将方向预测结合到三维提升小波中.这样每次提升小波中的预测可在相关性最强的方向上进行而不需总是局限在变换的方向上.实验证明,对于干涉多光谱图像这种方向性很强的立体图像序列,基于方向角预测的三维小波变换比原始三维提升小波变换有明显改进,在相同的量化编码下,基于方向角预测的三维小波变换比原始三维提升小波变换提高1 dB左右.经该种方法压缩的图像的光谱特性也得到明显改善.  相似文献   

10.
针对多光谱图像压缩算法现存的时空复杂度高、光谱特性利用不充分等问题,研究了多光谱图像的谱间稀疏等价表示及其聚类实现途径,进而设计了一种基于谱间自适应聚类和小波变换的多光谱图像压缩算法。算法利用吸引力传播聚类产生多光谱图像的谱间稀疏等价表示、在低复杂度下去除图像的谱间冗余,使用二维小波变换去除稀疏表示成分的空间冗余,采用分层树集合分割排序算法(SPIHT)进行压缩编码,并通过误差补偿机制提高多光谱图像重建质量。实验表明,该算法在保证较低时间和空间复杂度的基础上,较SPIHT等同类经典压缩算法,在相同的压缩比下,明显提高了重建图像的峰值信噪比,是一种通用有效的多光谱图像压缩算法。  相似文献   

11.
针对通信系统中的正交频分复用(Orthogonal frequency division multiplexing, OFDM)超宽信道具有的稀疏多径和含噪声特征,将信道估计问题转换为稀疏信号的重构和优化问题,设计了一种基于压缩感知理论和粒子滤波的OFDM信道估计方法。首先定义和描述了OFDM数学模型;然后在对压缩感知理论模型研究的基础上,采用改进的正交匹配算法对OFDM超宽信道进行重构,为了进一步减少信道重构的误差,将由于正交匹配算法得到的重构信道作为初始的粒子,并将OFDM数学模型转换为动态参数模型,并通过粒子滤波来更新模型中的参数和频率响应,通过不断迭代获得信道的估计值。为了验证文中方法的优越性,将文中方法与经典的正交匹配算法与粒子滤波算法进行比较,结果表明:文中方法能有效地对含噪声的稀疏信号进行估计,具有较小的重构误差,且与其它方法相比,具有较小的归一化均方误差。  相似文献   

12.
为了改善光学成像中的成像质量和效率,提出一种基于压缩传感的超分辨光学三维成像技术.通过物镜、编码板、色散元件、准直镜、聚焦镜、探测器等组成前端成像系统,然后,利用稀疏重构算法在后端处理器上重构光谱数据,从而将成像运算量从前端转移到后端.同时,引入块重构、错位预处理、多帧重构技术,提高重构的准确度,减小后端处理内存,降低计算复杂度.通过仿真实验对原始数据和重构数据的光谱曲线、信噪比、光谱误差、分类识别效果等指标进行对比分析,结果表明,利用本文压缩传感技术可以实现超分辨光学三维成像,且成像质量较高,数据应用效果较好,可用于大幅宽、高分辨率、低功耗、动态目标的成像观测.  相似文献   

13.
王瀛  梁楠  郭雷 《光子学报》2014,(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能.本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cuprite地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

14.
王瀛  梁楠  郭雷 《光子学报》2012,41(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能,本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cupritc地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

15.
基于径向基函数神经网络的高光谱遥感图像分类   总被引:4,自引:1,他引:4  
从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。  相似文献   

16.
根据高光谱遥感图像的特点及二维Gabor滤波器纹理分割的原理,提出了一种基于三维Gabor滤波器的高光谱遥感图像分类方法。三维Gabor滤波器能够对高光谱遥感图像所有波段同时进行滤波,将大量的图像信息抽取为少量的不同尺寸、方向和波谱的响应,极大减少了高光谱遥感图像纹理信息提取的计算量。利用不同方向和尺寸的三维Gabor滤波器对祁连山黑河流域上游地区的Hyperion影像全波段进行滤波处理,获取26个纹理响应特征,并分析不同纹理对不同地物的区分度。利用自动子空间划分的波段指数(BI)进行波段选择,选取不同的波段组合进行试验,寻找最佳降维幅度。按照纹理对不同地物响应的区分度逐一加入三维Gabor纹理特征,利用三维Gabor纹理辅助光谱信息,运用支持向量机(SVM)的方法进行监督分类。结果表明,基于三维Gabor纹理和自动子空间BI波段选择的SVM分类方法能够在有效降低光谱维数的同时,提高高光谱遥感图像分类的精度和效率。  相似文献   

17.
针对单一的滤波器提取高光谱图像空间纹理信息时不能获得完整的图像特征的不足,提出一种结合双边滤波和域转换标准卷积滤波的高光谱图像分类算法.该方法采用空间信息自适应融合的分类寻优,先对高光谱波段进行抽样分组,再用双边滤波和域转换标准卷积滤波对分组后的波段进行滤波,两种空间信息进行线性融合后交由支持向量机完成分类.实验表明,相比使用光谱信息、高光谱降维、空谱结合的支持向量机分类方法和边缘保持滤波以及递归滤波的方法,本文所提算法对高光谱图像的分类精度有较大提高,在训练样本仅为5%和3%的情况下,对印第安农林和帕维亚大学图像的总体分类精度分别达到了96.95%和97.89%,比其他算法高出213个百分点,验证了该方法在高光谱图像分类的有效性.  相似文献   

18.
基于第二代小波的超谱遥感图像融合算法研究   总被引:4,自引:3,他引:4  
超谱遥感图像包含了大量的波段.波段之间的相关性较高.采用信息融合技术可以降低超谱图像的分析难度。提出了一种结构新颖的第二代小波加权融合算法。首先将图像分解为两个序列.用2阶Neville滤波器构造预测和更新算子.对两个序列以矩形栅格和梅花形栅格的格式进行交替预测和更新;再以各个波段的方差作为融合的特征.进行特征级第二代小波加权融合.最后对图像进行第二代小波重构。为了验证新方法的有效性.采用机载可见光-红外成像光谱仪超谱遥感图像进行仿真.并与典型融合方法主成分分析和离散小波变换的融合效果相比较。实验结果表明提出的第二代小波加权融合算法能够很好地保持图像的空间特性和光谱特性.其熵值高于主成分分析融合结果0.1949,高于离散小波变换融合结果0.7998。  相似文献   

19.
提出一种采用压缩感知的云图融合方法.该方法针对传统轮廓波存在频谱混叠的缺点,结合抗混叠塔式滤波器组和方向滤波器组,构造出一种抗混叠的轮廓波变换,并将其引入压缩感知中的稀疏表示环节,将云图分解成稠密和稀疏两部分|对稠密成份采用传统方法进行融合,而对稀疏成份,则在压缩感知框架下,通过少数线性测量的融合,并采用二步迭代收缩的图像重构算法,在迭代时利用前面两个估计值更新当前值,得到融合结果.实验表明,该方法的融合结果无论在视觉质量及定量指标上都明显优于传统方法,有利于揭示全面的天气信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号