首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
"Formal" and standard Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes 1 to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. The neutral Ru(II) catalyst was formed in situ by mixing equimolecular amounts of [Cp*Ru(CH3CN)3]PF6 and Et4NCl. Two isomeric bicyclic 1,3-cyclohexadienes 3 and 8 were obtained depending on the cyclic or acyclic nature of the alkene partner. Mechanistic studies on the Ru catalytic cycle revealed a clue for this difference: (a) when acyclic alkenes were used, linear coupling of 1,6-diynes with alkenes was observed giving 1,3,5-trienes 6 as the only initial reaction products, which after a thermal disrotatory 6e-pi electrocyclization led to the final 1,3-cyclohexadienes 3 as probed by NMR studies. This cascade process behaved as a formal Ru-catalyzed [2 + 2 + 2] cycloaddition. (b) With cyclic alkenes, the standard Ru-catalyzed [2 + 2 + 2] cycloaddition occurred, giving the bicyclic 1,3-cyclohexadienes 8 as reaction products. A complete catalytic cycle for the formal and standard Ru-catalyzed [2 + 2 + 2] cycloaddition of acetylene and cyclic and acyclic alkenes with the Cp*RuCl fragment has been proposed and discussed based on DFT/B3LYP calculations. The most likely mechanism for these processes would involve the formation of ruthenacycloheptadiene intermediates XXIII or XXVII depending on the alkene nature. From these complexes, two alternatives could be envisioned: (a) a reductive elimination in the case of cyclic alkenes 7 and (b) a beta-elimination followed by reductive elimination to give 1,3,5-hexatrienes 6 in the case of acyclic alkenes. Final 6e-pi electrocyclization of 6 gave 1,3-cyclohexadienes 3.  相似文献   

2.
"Formal" and standard RuII-catalyzed [2+2+2] cycloaddition of 1,6-diynes to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. When terminal 1,6-diynes 1 were used, two isomeric bicyclic 1,3-cyclohexadienes 4 or 6 were obtained, depending on the acyclic or cyclic nature of the alkene partner. When unsymmetrical substituted 1,6-diynes 7 were used, the reaction with acyclic alkenes took place regio- and stereoselectively to afford bicyclic 1,3-cyclohexadienes 8. A cascade process that behaves as a "formal" RuII-catalyzed [2+2+2] cycloaddition explained these results. Initially, a Ru-catalyzed linear coupling of 1,6-diynes 1 and 7 with acyclic alkenes occurs to give open 1,3,5-trienes of type 3, which after a thermal disrotatory 6e(-) pi-electrocyclization led to the final 1,3-cyclohexadienes 4 and 8. When disubstituted 1,6-diyne 10 was used with electron-deficient alkenes, new exo-methylene cyclohexadienes 12 arose from a competitive reaction pathway.  相似文献   

3.
Transition metal-catalyzed cycloaddition reactions represent powerful methods for the construction of complex polycyclic systems. We have developed a new intermolecular metal-catalyzed [4 + 2 + 2] cycloaddition of heteroatom-tethered enyne derivatives with 1,3-butadiene. This study demonstrates that excellent selectivity can be obtained for the heterocycloaddition adducts through the judicious choice of silver salt. The development of the tandem rhodium-catalyzed allylic substitution [4 + 2 + 2] cycloaddition provides a convenient three-component coupling that circumvents the prior formation of the enyne derivative. Finally, the introduction of a stereogenic center at C-2 leads to a diastereoselective cycloaddition, which provides a powerful new method for the construction of bicyclic octanoid ring systems applicable to target directed synthesis.  相似文献   

4.
Denmark SE  Baiazitov RY  Nguyen ST 《Tetrahedron》2009,65(33):6535-6207
An asymmetric synthesis of the ABCD ring system of daphnilactone B is described. The synthesis features a tandem, double intramolecular, [4+2]/[3+2] cycloaddition of a highly functionalized, enantiomerically enriched nitroalkene to generate a pentacyclic nitroso acetal. The cycloaddition establishes six contiguous stereogenic centers including the critical CD ring junction that bears two quaternary stereogenic centers. Hydrogenolysis of the nitroso acetal followed by amide reduction and cyclization provided the AB rings. The methyl substituent on the A ring was installed in the correct configuration via hydrogenation of an exocyclic olefin in the final step.  相似文献   

5.
The formal [3+2] cycloaddition of epoxides and unsaturated compounds is a powerful methodology for the synthesis of densely functionalized five‐membered heterocyclic compounds containing oxygen. Described is a novel enantioselective formal [3+2] cycloaddition of epoxides under Brønsted base catalysis. The bis(guanidino)iminophosphorane as a chiral organosuperbase catalyst enabled the enantioselective reaction of β,γ‐epoxysulfones with imines, owing to its strong basicity and high stereocontrolling ability, to provide enantioenriched 1,3‐oxazolidines having two stereogenic centers, including a quaternary one, in a highly diastereo‐ and enantioselective manner.  相似文献   

6.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

7.
The reaction of 2-siloxycyclo-1,3-dienes with E-vinyldiazoacetates in the presence of the bulky chiral dirhodium tetracarboxylate catalyst, Rh2(R-p-PhTPCP)4 results in an enantioselective [4+2] cycloaddition, in which three new stereogenic centers are formed. The [4+2] cycloadducts are generated as single diastereomers with high enantiocontrol (95–98 % ee). When the diene contains an additional stereogenic center, effective kinetic resolution can be achieved.  相似文献   

8.
The reaction of 2‐siloxycyclo‐1,3‐dienes with E‐vinyldiazoacetates in the presence of the bulky chiral dirhodium tetracarboxylate catalyst, Rh2(Rp‐PhTPCP)4 results in an enantioselective [4+2] cycloaddition, in which three new stereogenic centers are formed. The [4+2] cycloadducts are generated as single diastereomers with high enantiocontrol (95–98 % ee). When the diene contains an additional stereogenic center, effective kinetic resolution can be achieved.  相似文献   

9.
A catalytic asymmetric formal [3+3] cycloaddition of 3‐indolylmethanol and an in situ‐generated azomethine ylide has been established to construct a chiral six‐membered piperidine framework with two stereogenic centers. This approach not only represents the first enantioselective cycloaddition of isatin‐derived 3‐indolylmethanol, but also has realized an unusual enantioselective formal [3+3] cycloaddition of azomethine ylide rather than its common [3+2] cycloadditions. Besides, this protocol combines the merits of a multicomponent reaction and organocatalysis, which efficiently assembles a variety of isatin‐derived 3‐indolylmethanols, aldehydes, and amino esters into structurally diverse spiro[indoline‐3,4′‐pyridoindoles] with one all‐carbon quaternary stereogenic center in high yields and excellent enantioselectivities (up to 93 % yield, >99 % enantiomeric excess (ee)). Although the diastereoselectivity of the reaction is generally moderate, most of the diastereomers can be separated by using column chromatography followed by preparative TLC.  相似文献   

10.
The synthesis of a series of aromatic amide‐derived non‐biaryl atropisomers with a phosphine group and multiple stereogenic centers is reported. The novel phosphine ligands exhibit high diastereo‐ and enantioselectivities (up to >99:1 d.r., 95–99 % ee) as well as yields in the silver‐catalyzed asymmetric [3+2] cycloaddition of aldiminoesters with nitroalkenes, which provides a highly enantioselective strategy for the synthesis of optically pure nitro‐substituted pyrrolidines. In addition, the experimental results with regard to the carbon stereogenic center as well as the amide stereochemistry confirmed the potential of hemilabile atropisomers as chiral ligand in catalytic asymmetric [3+2] cycloaddition reaction.  相似文献   

11.
[reaction: see text] alpha-Acetoxynitroso compound 3 has been prepared as a new stable, isolable, and reactive dienophile in nitroso Diels-Alder reactions. The yield of the [4 + 2] cycloaddition of alpha-acetoxynitroso dienophile with 1,3-dienes could be enhanced in the presence of 20 mol % Lewis acid. An unexpected retro hetero-Michael reaction from 26 was observed, leading to the cleavage of the N-O bond of the cycloadduct. This tandem nitroso Diels-Alder/retro hetero-Michael sequence has been used with cyclic and acyclic 1,3-dienes.  相似文献   

12.
The mechanism of the gold‐catalyzed intermolecular cycloaddition between allenamides and 1,3‐dienes has been explored by means of a combined experimental and computational approach. The formation of the major [4+2] cycloaddition products can be explained by invoking different pathways, the preferred ones being determined by the nature of the diene (electron neutral vs. electron rich) and the type of the gold catalyst (AuCl vs. [IPrAu]+, IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazole‐2‐ylidene). Therefore, in reactions catalyzed by AuCl, electron‐neutral dienes favor a concerted [4+3] cycloaddition followed by a ring contraction event, whereas electron‐rich dienes prefer a stepwise cationic pathway to give the same type of formal [4+2] products. On the other hand, the theoretical data suggest that by using a cationic gold catalyst, such as [IPrAuCl]/AgSbF6, the mechanism involves a direct [4+2] cycloaddition between the diene and the gold‐activated allenamide. The theoretical data are also consistent with the observed regioselectivity as well as with the high selectivity towards the formation of the enamide products with a Z configuration. Finally, our data also explain the formation of the minor [2+2] products that are obtained in certain cases.  相似文献   

13.
The results of experimental and theoretical investigations on the mechanism of competitive [3+2] versus [4+2] cycloaddition reactions of simple acyclic imines with nitrosoalkenes are reported. The effect of substituents on the iminic nitrogen in influencing the cycloaddition pathways has been meticulously explored.  相似文献   

14.
Intramolecular photocycloaddition of 2-pyridones connected through a four-carbon tether (6-[4-(1,2-dihydro-1-methyl-2-oxo-3-pyridinyl)-4-[[(1,1-dimethylethyl)++ +dimethylsilyl]oxy]butyl]-4-methoxy-1,3-dimethyl-2(1H)-pyridinone) yields a single tetracyclic product with four new stereogenic centers. The diastereoselectivity of this [4 + 4] reaction is fully controlled by a stereogenic carbon of the tether. Treatment of the photoproduct with osmium tetraoxide transforms the alkene to a diol and the enol ether to an alpha-hydroxy ketone, with stereocontrol dictated by nearby lactams that block one face of each alkene. Allylmagnesium bromide addition to the ketone also yields a single diastereomer, but unexpectedly this product results from approach of the nucleophile to the most-hindered face of the ketone. Study of this reaction in a model system has found the allylic nucleophile to be unique, with nonallylic reagents approaching along the expected, least-hindered path. This contrasteric addition likely results from coordination of the allylic nucleophile to the nearby amide. The amide can therefore act either as a steric shield or as a directing group. The three steps of photocycloaddition, cis-hydroxylation, and nucleophilic addition constructs both quaternary carbons of the cyclooctane and four of the five stereogenic centers found in the eight-membered ring of Taxol.  相似文献   

15.
This synopsis addresses cyclobutane formation via light‐induced [2+2] cycloaddition from both cyclic and acyclic unsaturated carbonyl compounds, and 2,3‐dimethylbuta‐1,3‐diene  相似文献   

16.
《Tetrahedron letters》1987,28(22):2451-2454
The extent of diastereoinduction observed in the nickel-catalyzed intramolecular [4+4] cycloaddition of tethered 1,3-dienes is shown to be highly dependent upon the steric nature of the substituents at the stereogenic center. A model for the prediction of the extent and sense of induction is presented.  相似文献   

17.
Conjugated cyclic trienes have the potential for different types of cycloaddition reactions. In the present work, we will, in a novel asymmetric cycloaddition reaction, demonstrate that the organocatalytic reaction of 2‐acyl cycloheptatrienes with azomethine ylides proceeds as a [3+2] cycloaddition, which is in contrast to the Lewis acid‐catalyzed reaction, in which a [3+6] cycloaddition takes place. In the presence of a chiral organosuperbase, 2‐acyl cycloheptatrienes react in a highly enantioselective manner in the [3+2] cycloaddition with azomethine ylides, providing the 1,3‐dipolar cycloaddition product in high yields and up to 99 % ee. It is also shown that the diene formed by the reaction can undergo stereoselective dihydroxylation, bromination, and cycloaddition reactions. Finally, based on experimental observations, some mechanistic considerations are discussed.  相似文献   

18.
以3-羟甲基色酮为原料,在4-二甲氨基吡啶催化下与(Boc)2O反应生成中间体A;A与靛红和脯氨酸生成的1,3-偶极子发生[3+2]环加成反应,合成了8个未见文献报道的多环吡咯并双螺环色满酮氧化吲哚类化合物(3a^3h),收率50%~67%,dr值4/1~2/1,其结构经^1H NMR,^13C NMR和HR-MS(ESI-TOF)表征。确定了化合物3a(CCDC:1973858)和3g(CCDC:1973859)的相对构型。结果表明:该类化合物含有连续5个立体中心,包括两个螺环季碳中心。  相似文献   

19.
G. Savitha 《Tetrahedron letters》2008,49(51):7260-7263
Spiro dihydrofuran fluorene derivatives were prepared via [3+2] oxidative cycloaddition of 1,3-dicarbonyl compounds to 9-benzylidene-9H-fluorene and 2-(9H-fluorene-9-ylidene)-1-phenylethanone derivatives mediated by ceric ammonium nitrate. In the case of the reaction of 9-benzylidene-9H-fluorene with acyclic 1,3-dicarbonyl compounds, spiro 2-hydroxytetrahydrofuran fluorene derivatives were obtained.  相似文献   

20.
Methods for the synthesis of 1,3-dithiole-2-thiones, based on [4+2] cycloaddition of the 1,3-dithiole-2,4,5-trithione oligomer to various unsaturated acyclic, carbocyclic, and heterocyclic compounds, are reviewed. Methods for the production of substituted tetrathiafulvalenes, which can be regarded as derivatives of bis(ethylenedithio)tetrathiafulvalene, from 1,3-dithiole-2-thiones synthesized by this method are described. Dedicated to the memory of Professor O. Neilands. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 483–502, April, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号