首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Pd‐isatin Schiff base complex immobilized onγ‐Fe2O3 (Pd‐isatin Schiff base‐γ‐Fe2O3) was synthe‐sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu‐tion tr...  相似文献   

2.
A Pd-isatin Schiff base complex immobilized on γ-Fe2O3(Pd-isatin Schiff base-γ-Fe2O3) was synthe-sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu-tion transmission electron microscopy, X-ray diffraction, thermogravimetric gravimetric analysis,inductively-coupled plasma, X-ray photoelectron spectroscopy, and elemental analysis. It was used as a magnetically reusable Pd catalyst for the Heck and Suzuki cross-coupling reactions.  相似文献   

3.
The preparation of supported Pd nanoparticles on Tris(tris(hydroxymethyl)aminomethane)‐ modi‐fied Si O2 gel and their catalytic application in Heck coupling are investigated. The catalyst was char‐acterized using a combination of X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy, and scanning electron microscopy/energy‐dispersive X‐ray spec‐troscopy. The supported Pd nanoparticles were found to be a highly active and reusable catalyst for the Heck reaction at a low Pd loading(0.02 mol%) because of stabilization by the Tris moieties. Several reaction parameters, including the type and amount of solvent, base, and temperature, were evaluated. The heterogeneity of the catalytic system was investigated using different approaches, and showed that slight Pd leaching into the reaction solution occurred under the reaction condi‐tions. Despite this metal leaching, the catalyst can be reused seven times without significant loss of its activity.  相似文献   

4.
Ag2S‐graphene/TiO2 composites were synthesized by a facile sonochemical method.The products were characterized by X‐ray diffraction,scanning electron microscopy,energy dispersive X‐ray spectroscopy,transmission electron microscopy,and UV‐Vis diffuse reflectance spectrophotometry.During the synthesis reaction,the reduction of graphene oxide and loading of Ag2S and TiO2 particles were achieved.The Ag2S‐graphene/TiO2 composites possessed a large adsorption capacity for dyes,an extended light absorption range,and efficient charge separation properties.Hence,in the photodegradation of rhodamine B,a significant enhancement in the reaction rate was observed with the Ag2S‐graphene/TiO2 composites as compared to pure TiO2.The generation of reactive oxygen species was detected by the oxidation of 1,5‐diphenyl carbazide to 1,5‐diphenyl carbazone.The high activity was attributed to the synergetic effects of high charge mobility and the red shift in the absorption edge of the Ag2S‐graphene/TiO2 composites.  相似文献   

5.
A novel magnetic acidic catalyst comprising Preyssler(H14[Na P5W30O110]) heteropoly acid support‐ed on silica coated nickel ferrite nanoparticles (Ni Fe2O4@Si O2) was prepared.The catalyst was characterized by Fourier transform infrared,scanning electron microscopy,transmission electron microscopy,X‐ray diffraction,energy dispersive spectrum,VSM and particle size neasurement.Its catalytic activity was investigated for the synthesis of bis(dihydropyrimidinone)benzene and 3,4‐dihydropyrimidin‐2(1H)‐ones derivatives by the Biginelli reaction.With the catalyst,the reac‐tions occurred in less than 1 h with good to excellent yields.More importantly,the catalyst was easily separated from the reaction mixture by an external magnet and reused at least five times without degradation in the activity.  相似文献   

6.
A new method has been developed for the chemoselective acetylation of alcohols with acetic anhy‐dride in the presence of phenols using a novel,recyclable Cu O‐Zn O nanocatalyst.The catalyst was synthesized using the co‐precipitation method and characterized by N2 adsorption‐desorption,X‐ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dis‐persion scanning analyses.Furthermore,this catalyst could be recycled up to six times without significant loss in its activity.  相似文献   

7.
A new copper(Ⅱ) complex of a non‐symmetric Schiff base, [CuII(saldien)(H2O)]+(1), has been synthesized and characterized by elemental analysis and several other spectroscopic methods (Hsaldien = N‐(salicylidene)diethylenetriamine). The crystal structure of 1 has also been determined by X‐ray crystallography. The geometry of the complex cation in 1 was found to be distorted square pyramidal with the mononegative Schiff base coordinating to the copper in a tetradentate mode via the O,N,N’, and N’’‐donor atoms. The remaining coordination site was occupied by the O atom of a H2O molecule in the axial position. The catalytic potential of 1 was tested in the oxidation reactions of cyclooctene and cyclohexene with aqueous 30% H2O2/NaHCO3 in acetonitrile. These reactions proceeded smoothly to give the corresponding epoxides with selectivity levels greater than 99%. This catalytic system also showed high levels of activity and selectivity towards the oxidation of cyclohexane (i.e., cyclohexanol 37% and cyclohexanone 54%) in comparison with most of the other Cu‐based systems reported in the literature.  相似文献   

8.
12‐Tungstophosphoric acid supported on aerosil silica and silica‐coated γ‐Fe2O3 nanoparticles was prepared and characterized using transmission electron microscopy,scanning electron microscopy,and inductively coupled plasma atomic emission spectroscopy.The catalytic activity of the two prepared catalysts was compared in the synthesis of 1,8‐dioxo‐9,10‐diaryldecahydroacridines in water.12‐Tungstophosphoric acid was highly dispersed on the silica‐coated γ‐Fe2O3 nanoparticles and showed higher activity and a higher reuse number compared with the acid supported on aerosil silica.The catalyst could be recovered simply by using an external magnetic field and could be reused several times without appreciable loss of its catalytic activity.  相似文献   

9.
The catalytic activity of copper zirconium phosphate(ZPCu) in the selective oxidation of alcohols to their corresponding ketones or aldehydes, using H2O2 as an oxidizing agent, was studied. The oxida‐tion reaction was performed without any organic solvent, phase‐transfer catalyst, or additive. Steric factors associated with the substrates influenced the reaction. The catalyst was characterized using X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, and scanning electron microscopy. It was shown that the interlayer distance increased from 0.74 to 0.80 nm and the crystallinity was reduced after Cu2+ intercalation into the layers. This catalyst can be recovered and reused three times without significant loss of activity and selectivity.  相似文献   

10.
We report the fabrication and characterization of a magnetically recyclable Fe3O4@Nico@Ag catalyst for reduction reactions in the liquid phase. Fe3O4 is a magnetic core and nicotinic acid was used as the linker for Ag. The characterization was done with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, vibrating sample magnetometry (VSM), and ultraviolet-visible spectroscopy. VSM measurements proved the super-paramagnetic property of the catalyst.  相似文献   

11.
E.S.BAEISSA  R.M.MOHAMED 《催化学报》2013,34(6):1167-1172
Ga2O3‐SiO2 nanoparticles were prepared by a sol‐gel method and Pt was then immobilized on their surface via photo‐assisted deposition (PAD). The produced samples were characterized using X‐ray diffraction (XRD), ultraviolet and visible spectroscopy, photoluminescence emission spectroscopy, and surface area measurements. The catalytic performances of the Ga2O3‐SiO2 and Pt/ Ga2O3‐SiO2 samples were evaluated for the degradation of cyanide using visible light. XRD and EDX results showed that the Pt was well dispersed within the Ga2O3‐SiO2 phase and was detected on the surface of the catalyst, which confirmed the successful loading of Pt ions by the PAD method. BET results revealed that the surface area of Ga2O3‐SiO2 was higher than that of Pt/Ga2O3‐SiO2 . 0.3 wt% Pt/Ga2O3‐SiO2 exhibited the highest photocatalytic activity for degradation of cyanide under visible light. The catalyst could be reused with no loss in activity for the first 10 cycles.  相似文献   

12.
Iron zirconium phosphate (ZPFe) nanoparticles were found to function as an efficient catalyst for the acetylation of a wide range of alcohols and phenols using acetic anhydride, generating good to excellent yields under solvent‐free conditions. The steric and electronic properties of various sub‐strates had a significant influence on the reaction conditions required to achieve the acetylation. The catalyst used in the current study was characterized by inductively coupled plasma‐optical emission spectrometry, X‐ray diffraction, N2 adsorption‐desorption, scanning electron microscopy, and transmission electron microscopy. These analyses revealed that the interlayer distance in the catalyst increased from 7.5 to 9.3 ? when Fe3+was intercalated between the layers, whereas the crystallinity of the material was reduced. This nanocatalyst could also be recovered and reused at least six times without any discernible decrease in its catalytic activity. This new method for the acetylation of alcohols and phenols has several important advantages, including mild and environ‐mentally friendly reaction conditions, as well as good to excellent yields and a facile work‐up.  相似文献   

13.
Nanocrystalline MgO with a relatively high surface area and mesoporous structure was synthesized by a surfactant assisted precipitation method for use as the support of nickel catalysts for steam reforming of methane. The samples were characterized by X‐ray diffraction, N2 adsorption, temperature‐programmed reduction, temperature‐programmed oxidation, scanning electron microscopy, and transmission electron microscopy. The catalysts showed high catalytic activity and good stability in the steam reforming of methane. Increasing the nickel loading up to 10 wt% gave increased activity. Catalysts with higher nickel loadings showed more deposited carbon after reaction. The excellent anti‐coking performance of the catalysts was attributed to the formation of a nickel‐magnesia solid solution, basicity of the support surface, and nickel‐support interaction.  相似文献   

14.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200-600℃ for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the av...  相似文献   

15.
A visible‐light photocatalyst containing Ag2Se and reduced graphene oxide (RGO) was synthesized by a facile sonochemical‐assisted hydrothermal method. X‐ray diffraction, scanning electron mi‐croscopy w...  相似文献   

16.
A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2? anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.  相似文献   

17.
Wan-Kuen Jo  Joon Yeob Lee 《催化学报》2013,34(12):2209-2216
Fe‐TiO2 photocatalysts with different ratios of Fe to Ti were prepared by a sol‐gel process using tetra‐n‐butyl titanium and iron(III) nitrate as Ti and Fe sources, respectively. The photocatalytic function of the prepared composites was examined for the decomposition of low‐concentration(0.1 ppm) airborne benzene, toluene, ethyl benzene, and o‐xylene(BTEX). The Fe‐TiO2 composites were characterized by energy dispersive X‐ray spectroscopy, X‐ray diffraction, UV‐visible spectroscopy, and Fourier transform infrared spectroscopy. The time‐series ratios of outlet to inlet concentrations of toluene, ethyl benzene, and o‐xylene target chemicals, as determined by the Fe‐TiO2 composites under visible light exposure, were lower than or similar to those of the reference TiO2 photocatalyst. Moreover, the time‐series ratios of outlet to inlet concentrations of the three compounds, as determined for the Fe‐TiO2 composites, increased as the ratio of Fe to Ti increased from 0.001 to 0.010. In contrast, under UV exposure, the time‐series ratios of outlet to inlet concentrations of BTEX, determined for the Fe‐TiO2 composites, were similar to or higher than those obtained from the reference TiO2 photocatalyst. Fe‐TiO2 composites with an optimal Fe to Ti ratio could effectively be applied for the purification of low‐concentration aromatic organic pollutants.  相似文献   

18.
Amorphous aluminophosphate (AlP) and metal‐aluminophosphates (MAlPs, where M=2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of n‐heptanal and benzaldehyde were investigated. The nitrogen adsorption‐desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature‐programmed desorption of NH3 and CO2 revealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X‐ray amorphous and powder X‐ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M‐O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75%with a yield of 65%. The best conversion of n‐heptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.  相似文献   

19.
Sulfonic acid groups were grafted onto three different types of synthesized magnetic nanoparticles, namely Fe3O4, Fe3O4@SiO2, and Fe3O4@MCM‐48. The sulfonic acid‐functionalized nanoparticles were evaluated as catalysts for the synthesis of 5‐aryl‐1H‐benzo[f]chromeno[2,3‐d]pyrimidine‐2,4(3H,5H)‐dione derivatives in terms of activity and recyclability. Their catalytic activities were compared with that of the homogeneous acid catalyst 1‐methylimidazolium hydrogen sulfate ([HMIm][HSO4]). The activity of Fe3O4@MCM‐48–SO3H was comparable to those of the other heter‐ogeneous and homogeneous catalysts.  相似文献   

20.
Mesoporous oxides TiO2 and ZrO2, synthesized by surfactant templating via a neutral C13(EO)6–Zr(OC3H7)4 assembly pathway, and ceria‐modified TiO2 and ZrO2, prepared by a deposi‐tion–precipitation (DP) method, featuring high surface areas and uniform pore size distributions were used as supports for gold catalysts. The supported gold catalysts were assessed for the cata‐lytic abatement of air pollutants, i.e., CO, CH3OH, and (CH3)2O. The gold was supported on the mes‐oporous oxides by a DP method. The supports and catalysts were characterized by powder X‐ray diffraction, high‐resolution transmission electron microscopy, N2 adsorption–desorption analysis, and temperature‐programmed reduction technique. A high degree of synergistic interaction be‐tween ceria and mesoporous ZrO2 and TiO2 as well as a positive modification of the structural and catalytic properties by ceria was observed. The ceria additive interacts with the mesoporous oxides and induces a strong effect on the reducibility of the supports. The catalytic behavior of the catalysts was discussed to determine the role of the ceria modifying additive and possible interaction be‐tween the gold nanoparticles and ceria‐mesoporous oxide supports. The gold catalysts supported on ceria‐modified mesoporous ZrO2 displayed superior catalytic activity (~100%conversion of CO at 10 °C and CH3OH at 60 °C). The high catalytic activity can be attributed to the ability of the sup‐port to assist oxygen vacancies formation. The studies indicate that the ceria‐modified mesoporous oxide supports have potential as supports for gold‐based catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号