首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
设计高效的催化剂对于电解水制氢至关重要。基于过渡金属硒化物(TMSe)的高催化活性和金属有机骨架(MOFs)的灵活结构,我们提出了一种将MOFs与TMSe复合的策略,在导电基底泡沫镍(NF)上生长的复合材料不仅继承了2种单体的优点,还有效地改善了MOFs导电性差、TMSe易团聚的缺点。MoSe2/Co-MOF/NF在碱性溶液中展示出优异的电催化产氧活性,在电流密度为10 mA·cm-2时其过电位仅为242 mV,塔菲尔斜率仅为50.64 mV·dec-1。此外,该材料在碱性溶液中经1 000圈循环伏安(CV)循环测试和30 h的恒电压电解测试均表现出良好的稳定性。  相似文献   

2.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合电容器达到38.9 Wh·kg-1的最大能量密度和8 000.0 W·kg-1的最大功率密度。  相似文献   

3.
通过简便的两步电沉积法在泡沫镍表面有效复合非晶态Ni3S2材料与富缺陷的NiFe双金属羟基氧化物,从而构建了NiFe/Ni3S2/NF三维分级纳米异质电极。受益于非晶态Ni3S2和富缺陷NiFe材料的结构和催化优势,以及异质界面的强电子相互作用,使得NiFe/Ni3S2/NF催化电极表现出优异的析氧催化性能:达到100 mA·cm-2时的析氧过电位仅为273 mV,远优于大多数已报道的Ni/Fe基复合材料。值得注意的是,在1 mol·L-1 KOH溶液中,仅需~372 mV的过电位即可稳定输出1 000 mA·cm-2的高电流密度达27 h以上。  相似文献   

4.
采用简单的热解-硫化两步法成功制备了一种新型的富氮掺杂碳空心纳米笼(NC)负载双元金属硫化物纳米颗粒(CoNixSy)的复合材料 CoNixSy/NC。该策略以丁二酮肟镍为镍源,增加了活性位点,同时前驱体 ZIF-8@Ni-ZIF-67的核壳结构为空心碳纳米笼的构建提供了可能性。这种独特的负载多金属硫化物纳米颗粒的中空结构使CoNixSy/NC作为电极材料时具有更多的活性位点、更高的导电性和结构稳定性,从而使其具有较高的比容量(1 A·g-1时比容量为629.2 F·g-1),优异的循环稳定性(1 A·g-1下1 000次循环测试后容量保持率为93.4%)。当将其进一步组装成对称超级电容器后,在1 A·g-1下可提供207.2 F·g-1的比电容,1 000圈循环稳定后的容量保持率为85.36%。  相似文献   

5.
成分和结构是影响多元过渡金属硒化物电化学活性的关键因素。适当掺杂其他金属元素可以有效提高电极材料的电化学性能。通过简单的一步水热法,在泡沫镍上制备出了一种无黏结剂的Mo掺杂NiMnSe2(记作Ni0.8Mo0.2MnSe2)。Mo的少量掺杂为电极材料提供了丰富的反应活性位点,大大提高了NiMnSe2的电化学性能。在1 A·g-1时,Ni0.8Mo0.2MnSe2的比容量达到1 404.0 F·g-1。掺杂Mo显著降低了NiMnSe2的电荷转移电阻和扩散电阻。组装的混合超级电容器Ni0.8Mo0.2MnSe2//AC (活性炭)比容量达到81.6 F·g-1,且倍率性能优异。在2 A·g-1下连续充放电10 000周,容量保持率为95.8%,表现出超高的循环稳定性。混合超级电容器Ni0.8Mo0.2MnSe2//AC在376.6 W·kg-1的功率密度下,能量密度达25.5 Wh·kg-1,高于NiMnSe2//AC (17.3 Wh·kg-1)。  相似文献   

6.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为 45.3 mV·dec-1,可以媲美商业 RuO2催化剂。此外,Co1Fe1-P/NF 催化剂在 10 mA·cm-2的 100 h 计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

7.
成分和结构是影响多元过渡金属硒化物电化学活性的关键因素。适当掺杂其他金属元素可以有效提高电极材料的电化学性能。通过简单的一步水热法,在泡沫镍上制备出了一种无黏结剂的Mo掺杂NiMnSe2(记作Ni0.8Mo0.2MnSe2)。Mo的少量掺杂为电极材料提供了丰富的反应活性位点,大大提高了NiMnSe2的电化学性能。在1 A·g-1时,Ni0.8Mo0.2MnSe2的比容量达到1 404.0 F·g-1。掺杂Mo显著降低了NiMnSe2的电荷转移电阻和扩散电阻。组装的混合超级电容器Ni0.8Mo0.2MnSe2//AC (活性炭)比容量达到81.6 F·g-1,且倍率性能优异。在2 A·g-1下连续充放电10 000周,容量保持率为95.8%,表现出超高的循环稳定性。混合超级电容器Ni0.8Mo0.2MnSe2//AC在376.6 W·kg-1的功率密度下,能量密度达25.5 Wh·kg-1,高于NiMnSe2//AC (17.3 Wh·kg-1)。  相似文献   

8.
采用简单的热解-硫化两步法成功制备了一种新型的富氮掺杂碳空心纳米笼(NC)负载双元金属硫化物纳米颗粒(CoNixSy)的复合材料CoNixSy/NC。该策略以丁二酮肟镍为镍源,增加了活性位点,同时前驱体ZIF-8@Ni-ZIF-67的核壳结构为空心碳纳米笼的构建提供了可能性。这种独特的负载多金属硫化物纳米颗粒的中空结构使CoNixSy/NC作为电极材料时具有更多的活性位点、更高的导电性和结构稳定性,从而使其具有较高的比容量(1 A·g-1时比容量为629.2 F·g-1),优异的循环稳定性(1 A·g-1下1 000次循环测试后容量保持率为93.4%)。当将其进一步组装成对称超级电容器后,在1 A·g-1下可提供207.2 F·g-1的比电容,1 000圈循环稳定后的容量保持率为85.36%。  相似文献   

9.
本文采用淬冷法制备了V2O5样品。采用FTIR、XRD对其进行了表征。结果表明所制样品为无定形V2O5。通过循环伏安法和恒电流充放电测试研究其电容特性,并探讨了电化学反应机理。电化学性能测试结果表明,水基电解液种类及浓度、电压范围、扫描速度、电流密度均对无定形V2O5 电容性能产生影响。在1 mol·L-1 NaNO3溶液中,电位窗口为-0.2~0.8 V(vs SCE)范围内,5 mV·s-1的扫描速度下,无定形V2O5具有良好的电容性能;在250 mA·g-1的电流密度下,比电容为185.1 F·g-1,循环性能良好。  相似文献   

10.
成分和结构是影响多元过渡金属硒化物电化学活性的关键因素。适当掺杂其他金属元素可以有效提高电极材料的电化学性能。通过简单的一步水热法,在泡沫镍上制备出了一种无黏结剂的Mo掺杂NiMnSe2(记作Ni0.8Mo0.2MnSe2)。Mo的少量掺杂为电极材料提供了丰富的反应活性位点,大大提高了NiMnSe2的电化学性能。在1 A·g-1时,Ni0.8Mo0.2MnSe2的比容量达到1 404.0 F·g-1。掺杂Mo显著降低了NiMnSe2的电荷转移电阻和扩散电阻。组装的混合超级电容器Ni0.8Mo0.2MnSe2//AC (活性炭)比容量达到81.6 F·g-1,且倍率性能优异。在2 A·g-1下连续充放电10 000周,容量保持率为95.8%,表现出超高的循环稳定性。混合超级电容器Ni0.8Mo0.2MnSe2//AC在376.6 W·kg-1的功率密度下,能量密度达25.5 Wh·kg-1,高于NiMnSe2//AC (17.3 Wh·kg-1)。  相似文献   

11.
本文中主要研究了原始溶液中Ni、Co质量比(wNi∶wCo)对Ni-Co-S-O复合材料催化剂结构及性能的影响.采用水热法在泡沫镍(NF)基底上制备出了三维分层花瓣状纳米结构的Ni-Co-S-O复合材料催化剂.当原始溶液中wNi∶wCo=1∶2时,所制备的Ni-Co-S-O/NF(1∶2)催化剂具有更大的电化学活性面积...  相似文献   

12.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合...  相似文献   

13.
以六水合氯化镍(NiCl2·6H2O)为金属盐,对苯二甲酸(PTA)为有机配体,通过改变溶剂的类型,采用一步溶剂热法在泡沫镍表面自生长高负载量的镍基MOF材料(Ni-MOF/NF)。溶剂对PTA的溶解性越好或pH值越高,PTA在溶液中的去质子速率越快,材料的形核速率越快。自生长镍基MOF材料在不同溶剂体系下表现出球簇、片状和块体状三类形貌,同时负载量也随之改变。当采用三元混合溶剂(N,N-二甲基甲酰胺、水和乙醇的体积比为1∶1∶1)时,Ni-MOF/NF材料在泡沫镍表面的负载量达到10 mg·cm-2,在3 mol·L-1 KOH电解液中1 mA·cm-2的电流密度下的面积容量达到8780 mF·cm-2。在5 mA·cm-2电流密度下,面积容量仍达到5544 mF·cm-2,容量保持率为63%,表现出优良的倍率性能。经过1000次充放电循环后容量保持率为56%,具有良好的循环稳定性能。  相似文献   

14.
通过简便的两步电沉积法在泡沫镍表面有效复合非晶态Ni3S2材料与富缺陷的NiFe双金属羟基氧化物,从而构建了NiFe/Ni3S2/NF三维分级纳米异质电极。受益于非晶态Ni3S2和富缺陷NiFe材料的结构和催化优势,以及异质界面的强电子相互作用,使得NiFe/Ni3S2/NF催化电极表现出优异的析氧催化性能:达到100 mA·cm-2时的析氧过电位仅为273 mV,远优于大多数已报道的Ni/Fe基复合材料。值得注意的是,在1 mol·L-1KOH溶液中,仅需~372 mV的过电位即可稳定输出1000 mA·cm-2的高电流密度达27 h以上。  相似文献   

15.
经一步水热法在泡沫镍(NF)上原位生长获得了AlCo-LDH/NF (LDH=层状双氢氧化物)催化剂。基于AlCo-LDH的高表面积和良好相界面,催化剂表现出了优异的电催化析氧反应(OER)活性。在碱性介质中,当电流密度为200 mA·cm-2时,AlCo3-LDH/NF催化剂具有419 mV的低过电位和50.04 mV·dec-1的低Tafel斜率。  相似文献   

16.
采用水热和低温磷化反应两步法,在无添加沉淀剂条件下成功在泡沫镍上合成纳米花状镍钴磷化物(NiCoP/NF).研究结果表明,镍/钴元素物质的量之比为1∶1时,在1A·g-1电流密度下,Ni1/2Co1/2P/NF的比容量高达1276.36 F·g-1,在10A·g-1电流密度下充放电循环3000次后,比容量保持率为78....  相似文献   

17.
我们合理设计和制备了一种新型的高性能析氧电催化剂——泡沫镍负载Co_3O_4@NiMn-LDH(层状双金属氢氧化物)三维异质结构阵列(Co_3O_4@NiMn-LDH/NF)。这种基于泡沫镍基底的三维异质结构催化剂经简单的两步水热反应即可制得。对比Co_3O_4、NiMn-LDH及传统RuO2催化剂,所制备的Co_3O_4@NiMn-LDH/NF催化剂展示出更优异的电催化析氧性能。在1 mol·L~(-1)KOH溶液中,电流密度为50 mA·cm~(-2)时的过电势仅为282 mV,塔菲尔斜率为64 mV·dec~(-1)。通过有效的界面工程设计,使异质结构陈列Co_3O_4@NiMn-LDH发挥出Co_3O_4和NiMn-LDH各自优异的电催化性能。其中,基于泡沫镍基底生长的活性组分Co_3O_4纳米线阵列作为中间核支撑结构,保持了良好的空隙率,不仅有利于暴露更多的活性位点,而且有利于电解液的扩散和气体产物的释放;而依附于Co_3O_4纳米线阵列上的NiMn-LDH异质结构纳米片层则富有更多的亲水性基团,使得活性位点更易与水结合,从而促进氧析出反应的进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号