首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Extreme fluctuations are modeled by a point system of stochastic equations, in which power spectra inversely proportional to the frequency are produced under the effect of white noise. The distribution of extreme fluctuations corresponds to the maximum of statistical entropy, which points to their stability in nature. By calculating the spectral entropy of random processes, it becomes possible to investigate their stability directly from power spectra without the need to calculate the amplitude distribution functions. The spectral entropy as a function of white noise amplitude has a minimum. The position of the spectral entropy minimum corresponds to the critical state of the system in which the spectra of fluctuating quantities are inversely proportional to the frequency.  相似文献   

2.
Spatiotemporal chaos and noise   总被引:1,自引:0,他引:1  
Low-dimensional chaotic dynamical systems can exhibit many characteristic properties of stochastic systems, such as broad Fourier spectra. They are distinguishable from stochastic processes through finite values for their dimension, Lyapunov exponents, and Kolmogorov-Sinai entropy. We discuss how these characteristic observables are modified in spatiotemporal chaotic systems like. coupled map lattices. We analyze with the help of Lyapunov concepts how the stochastic limit is approached and how these properties can be observed directly through local dimension measurements from reconstructed time series. Finally, we discuss the interaction of spatiotemporal attractors with external noise and possible connections to problems of pattern selection and stability.  相似文献   

3.
We present a qualitative model and data in evidence for the selection and stabilization of neocortical brain-wave power spectral modes by slow periodic and fast noise driving by brain stem neurons. Unlike noise effects in a bistable potential, increasing noise amplitude via more brain stem neurons increases the measure on unstable manifolds trapped in the saddle-sinks of the neural membrane attractor andincreases dwell times. We suggest that the effect of noise in expanding dynamical systems such as the generalized neuronal membrane equations studied here may be analogous to that of many-frequency quasiperiodic driving which leads to the stabilization of the EEG as a strange, nonchaotic attractor.  相似文献   

4.
We study the permutation complexity of finite-state stationary stochastic processes based on a duality between values and orderings between values. First, we establish a duality between the set of all words of a fixed length and the set of all permutations of the same length. Second, on this basis, we give an elementary alternative proof of the equality between the permutation entropy rate and the entropy rate for a finite-state stationary stochastic processes first proved in [J.M. Amigó, M.B. Kennel, L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D 210 (2005) 77-95]. Third, we show that further information on the relationship between the structure of values and the structure of orderings for finite-state stationary stochastic processes beyond the entropy rate can be obtained from the established duality. In particular, we prove that the permutation excess entropy is equal to the excess entropy, which is a measure of global correlation present in a stationary stochastic process, for finite-state stationary ergodic Markov processes.  相似文献   

5.
In this paper I discuss how synchronisation among neurons is affected by noise. Synchronisation of model neurons, which are basically autonomous relaxation oscillators, is enhanced by the addition of low levels of current noise and destroyed by the addition of higher levels of noise. Such neural stochastic resonance also occurs among neural networks in living systems at least at two functionally important scales, both within local networks and between the larger neuronal groups that are thought to implement complex cognitive and perceptual processes.  相似文献   

6.
双稳随机动力系统信号调制噪声效应的数值分析   总被引:8,自引:1,他引:7       下载免费PDF全文
用数值方法研究了双稳随机动力系统的信号调制噪声效应.结果表明,正弦信号在系统输出中的效应仍为正弦信号,白噪声的效应则为维纳过程,通过选择合适的系统参数,可以减小系统输出中信号和噪声之间的耦合效应,系统可以大大抑制噪声,从而在双稳系统中可以产生信号调制噪声效应. 关键词: 双稳系统 信号调制噪声效应 随机共振  相似文献   

7.
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.  相似文献   

8.
Random dynamics of the Morris-Lecar neural model   总被引:1,自引:0,他引:1  
Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris-Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris-Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris-Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place. Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris-Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris-Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.  相似文献   

9.
A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production.  相似文献   

10.
We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form \(Q\sim [\ln (1/D)]^2\). Our results are compared to numerical simulations of the respective Langevin equations.  相似文献   

11.
This paper is a presentation of neuronal control systems in the terms of the dynamical systems theory, where (1) the controller and its surrounding environment are seen as two co-dependent controlled dynamical systems (2) the behavioral transitions that take place under adaptation processes are analyzed in terms of phase-transitions. We present in the second section a generic method for the construction of multi-population random recurrent neural networks. The third section gives an overview of the various phase transitions that take place under an external forcing signal, or under internal parametric changes. The section 4 presents some applications in the domain of sequence identification and active perception modeling. The section 5 presents some applications in the domain of closed-loop control systems and reinforcement learning.  相似文献   

12.
The aim of this paper is to present a line of ideas, centred around entropy production andquantum dynamics, emerging from von Neumann's work on foundations of quantum mechanics and leading to current research. The concepts of measurement, dynamical evolution and entropy were central in J. von Neumann's work. Further developments led to the introduction of generalized measurements in terms of positive operator-valued measures, closely connected to the theory of open systems. Fundamental properties of quantum entropy were derived and Kolmogorov and Sinai related the chaotic properties of classical dynamical systems with asymptotic entropy production. Finally, entropy production in quantum dynamical systems was linked with repeated measurement processes and a whole research area on nonequilibrium phenomena in quantum dynamical systems seems to emerge.  相似文献   

13.
李爽  李倩  李佼瑞 《物理学报》2015,64(10):100501-100501
针对随机相位作用的Duffing混沌系统, 研究了随机相位强度变化时系统混沌动力学的演化行为及伴随的随机共振现象. 结合Lyapunov指数、庞加莱截面、相图、时间历程图、功率谱等工具, 发现当噪声强度增大时, 系统存在从混沌状态转化为有序状态的过程, 即存在噪声抑制混沌的现象, 且在这一过程中, 系统亦存在随机共振现象, 而且随机共振曲线上最优的噪声强度恰为噪声抑制混沌的参数临界点. 通过含随机相位周期力的平均效应分析并结合系统的分岔图, 探讨了噪声对混沌运动演化的作用机理, 解释了在此过程中随机共振的形成机理, 论证了噪声抑制混沌与随机共振的相互关系.  相似文献   

14.
The effect of signal modulating noise in bistable stochastic dynamical systems is studied. The concept of instantaneous steady state is proposed for bistable dynamical systems. By making a dynamical analysis of bistable stochastic systems, we find that global and local effect of signal modulating noise as well as stochastic resonance can occur in bistable dynamical systems on which both a weak sinusoidal signal and noise are forced. The effect is demonstrated by numerical simulation.  相似文献   

15.
In classical information theory, one of the most important theorems are the coding theorems, which were discussed by calculating the mean entropy and the mean mutual entropy defined by the classical dynamical entropy (Kolmogorov-Sinai). The quantum dynamical entropy was first studied by Emch [13] and Connes-Stormer [11]. After that, several approaches for introducing the quantum dynamical entropy are done [10, 3, 8, 39, 15, 44, 9, 27, 28, 2, 19, 45]. The efficiency of information transmission for the quantum processes is investigated by using the von Neumann entropy [22] and the Ohya mutual entropy [24]. These entropies were extended to S- mixing entropy by Ohya [26, 27] in general quantum systems. The mean entropy and the mean mutual entropy for the quantum dynamical systems were introduced based on the S- mixing entropy. In this paper, we discuss the efficiency of information transmission to calculate the mean mutual entropy with respect to the modulated initial states and the connected channel for the quantum dynamical systems.  相似文献   

16.
邢修三 《物理学报》2014,63(23):230201-230201
本文综述了作者的研究成果.近十年,作者将现有静态统计信息理论拓展至动态过程,建立了以表述动态信息演化规律的动态信息演化方程为核心的动态统计信息理论.基于服从随机性规律的动力学系统(如随机动力学系统和非平衡态统计物理系统)与遵守确定性规律的动力学系统(如电动力学系统)的态变量概率密度演化方程都可看成是其信息符号演化方程,推导出了动态信息(熵)演化方程.它们表明:对于服从随机性规律的动力学系统,动态信息密度随时间的变化率是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和耗损三者引起的,而动态信息熵密度随时间的变化率则是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和产生三者引起的.对于遵守确定性规律的动力学系统,动态信息(熵)演化方程与前者的相比,除动态信息(熵)密度在系统内部的态变量空间仅有漂移外,其余皆相同.信息和熵已与系统的状态和变化规律结合在一起,信息扩散和信息耗损同时存在.当空间噪声可略去时,将会出现信息波.若仅研究系统内部的信息变化,动态信息演化方程就约化为与表述上述动力学系统变化规律的动力学方程相对应的信息方程,它既可看成是表述动力学系统动态信息的演化规律,亦可看成是动力学系统的变化规律都可由信息方程表述.进而给出了漂移和扩散信息流公式、信息耗散率公式和信息熵产生率公式及动力学系统退化和进化的统一信息表述公式.得到了反映信息在传递过程中耗散特性的动态互信息公式和动态信道容量公式,它们在信道长度和信号传递速度之比趋于零的极限情况下变为现有的静态互信息公式和静态信道容量公式.所有这些新的理论公式和结果都是从动态信息演化方程统一推导出的.  相似文献   

17.
We study the inherent power fluctuations in multicircuit self-oscillating systems, which can be represented by an oscillating circuit with a nonlinear element connected in series, and by a multiresonance linear system. We obtain in a general form the expressions for the spectral density of power fluctuations. We show that the shape of the spectral line of a multicircuit self-oscillator is, in general, asymmetric, and the pedestal has a number of maxima. The structure of the pedestal is determined by the roots of the characteristic stability equation. An estimate of the width of the spectral line is given. As examples, we consider the line shape of two- and three-circuit frequency stabilization systems. We take into account the noise contributions of separate circuits at various temperatures.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 27, No. 1, pp. 71–78, January, 1984.In conclusion, the authors express their gratitude to I. I. Minakova for the useful discussions of the results of the paper.  相似文献   

18.
郭培荣  徐伟  刘迪 《中国物理 B》2010,19(3):30520-030520
A stochastic dynamical system with double singularities driven by non-Gaussian noise is investigated. The Fokker--Plank equation of the system is obtained through the path-integral approach and the method of transformation. Based on the definition of Shannon's information entropy and the Schwartz inequality principle, the upper bound for the time derivative of entropy is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculations can be used to interpret the effects of the system dissipative parameter, the system singularity strength parameter, the noise correlation time and the noise deviation parameter on the upper bound.  相似文献   

19.
We compare two proposals for the dynamical entropy of quantum deterministic systems (CNT and AFL) by studying their extensions to classical stochastic systems. We show that the natural measurement procedure leads to a simple explicit expression for the stochastic dynamical entropy with a clear information-theoretical interpretation. Finally, we compare our construction with other recent proposals.  相似文献   

20.
Zhi-Kun Li 《中国物理 B》2023,32(1):10203-010203
We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly, essential properties of fractional Brownian motion (fBm) and generation of fractional Gaussian noise (fGn) are presented, and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes. Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of fGn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance (ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals (ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号