首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

2.
A series of copolymers of acrylic acid, N‐isopropylacrylamide (NIPAM), and cinnamoyloxyethyl acrylate were synthesized and studied. The polymers were responsive to four stimuli: UV light, temperature, pH, and ionic strength. The polymeric cinnamoyl chromophores underwent efficient photodimerization with concomitant photocrosslinking of the polymeric micelles. Because of the content of NIPAM, the terpolymers displayed a lower critical solution temperature, which could be controlled by the polymer composition, pH, and ionic strength. The ability to respond to the pH resulted from the content of acrylic carboxyl groups, which became protonated at low pHs. The changes in the polymer properties due to the application of the aforementioned stimuli were studied with pyrene and perylene as fluorescent probes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3879–3886, 2004  相似文献   

3.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

4.
A stimuli‐responsive amphiphilic copolymer poly(NIPAMmb‐VBNBIn), including N‐isopropylacrylamide (NIPAM) as a thermoresponsive unit and 1‐(4‐vinyl benzyl)‐2‐naphthyl‐benzimidazole (VBNBI) as a sensitive fluorophore unit, was designed and synthesized by reversible addition‐fragmentation chain transfer polymerization. The aqueous solutions of the copolymers exhibited reversible fluorescent response to pH and temperature. In addition, the copolymers showed aggregation‐induced fluorescence enhancement in THF/water mixture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4459–4466  相似文献   

5.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
In this research, thermo‐ and pH‐responsive chitosan‐based porous nanoparticles were prepared by the temperature‐dependent self assembly method. The chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymer solution was prepared through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS‐g‐PNIPAAm solution was diluted by deionized water and heated to 40 °C for CS‐g‐PNIPAAm self‐assembly. After that, CS‐g‐PNIPAAm assembled to form micelles in which shell layer was CS. Crosslinking agent was used to reinforce the micelle structure to form nanoparticle. The molar ratio of CS/NIPAAm in the feed mixture was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. TEM images showed that a porous structure of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in‐vitro release experiment. These porous particles with environmentally sensitive properties are expected to be utilized in hydrophilic drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5126–5136, 2009  相似文献   

7.
In this research, thermo‐ and pH‐responsive nanoparticles with an average diameter of about 50–200 nm were synthesized via the surfactant‐free emulsion polymerization. The thermal/pH dual responsive properties of these nanoparticles were designed by the addition of a pH sensitive monomer, acrylic acid (AA), to be copolymerized with N‐isopropylacrylamide (NIPAAm) in a chitosan (CS) solution. The molar ratio of CS/AA/NIPAAm in the feed was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. It was found that CS‐PAA‐PNIPAAm nanoparticles could be well dispersed in the aqueous solution and carried positive charges on the surface. The addition of thermal‐sensitive NIPAAm monomer affected the polymerization mechanism and interactions between CS and AA. The particle size of the nanoparticles was found to be varied with the composition of NIPAAm monomer in the feed. The synthesized nanoparticles exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. The environmentally responsive nanoparticles are expected to be used in many fields such as drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2798–2810, 2009  相似文献   

8.
A series of gradient and block copolymers, based on 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and tert‐butyl acrylate (tBA), were synthesized by atom transfer radical polymerization (ATRP) in a first step. The MEO2MA monomer leads to the production of thermosensitive polymers, exhibiting lower critical solution temperature (LCST) at around room temperature, which could be adjusted by changing the proportion of tBA in the copolymer. In a second step, the tert‐butyl groups of tBA were hydrolyzed with trifluoroacetic acid to form the corresponding block and gradient copolymers of MEO2MA and acrylic acid (AA), which exhibited both temperature and pH‐responsive behavior. These copolymers showed LCST values strongly dependent on the pH. At acid pH, a slightly decrease of LCST with an increase of AA in the copolymer was observed. However, at neutral or basic conditions, ionization of acid groups increases the hydrophilic balance considerably raising the LCST values, which even become not observable over the temperature range under study. In the last step, these carboxylic functionalized copolymers were covalently bound to biocompatible and biodegradable films of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] obtained by casting and, previously treated with ethylenediamine (ED) to render their surfaces with amino groups. Thereby, thermosensitive surfaces of modified P(HB‐co‐HHx) could be obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Two different synthesis strategies were used to synthesize N‐vinylcaprolactam (VCL)‐acrylic acid (AA)‐based temperature‐ and pH‐sensitive microgels under the adequate conditions to avoid possible hydrolysis of VCL due to the presence of carboxylic groups provided by AA. Polymeric and colloidal features of the microgels were analyzed: the partial conversion evolutions of each comonomer were determined by 1H NMR and the swelling/deswelling behavior by means of Photon Correlation Spectroscopy. Considering that microgels are porous soft nanoparticles, conductimetric titrations at the swollen state were carried out to calculate the volumetric charge density. The results indicate that the addition of AA after 30 minutes of reaction time helped to incorporate higher amounts of AA into microgels and as a result, to obtain both temperature‐ and pH‐sensitive nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

11.
We report a novel multifunctional material, poly(N‐isopropylacrylamide) (PNIPAAm) containing 2‐(2‐hydroxyphenyl)benzoxazole (HPBO), for sensing pH, zinc ion concentration, or temperature. By titration with zinc ions, a clear blue‐shifted emission with a high quantum efficiency was detected since the zinc complex prevented the nonradiative decay pathways of the HPBO moiety. The fluorescence characteristics of the copolymer were similar at various acidic or neutral conditions. However, a large blue shift on the emission maximum was exhibited under the basic condition, due to the disruption of the ESIPT process by the phenolate anion. The LCST affected the fluorescence properties significantly at the basic condition because the incompatibility between the PNIPAAm chain and phenolated HPBO moieties resulted in aggregation formation. The present study demonstrates that the new benzoxazole‐containing PINPAAm copolymer could be potentially used as multifunctional sensing material.

  相似文献   


12.
Simple‐structured copolymer, poly(NIPMAM‐co‐CPMA), consisting of N‐isopropylmethacrylamide (NIPMAM) and (Z)‐4‐(1‐cyano‐2‐(4‐(dimethylamino) phenyl)vinyl)phenylmethylacrylate (CPMA) units as thermo‐ and pH‐responsive fluorescent signaling parts, respectively, has been synthesized by reversible addition–fragmentation chain transfer polymerization. The copolymer PCN250 (m/n = 250) shows absorbance enhancement or decrease at different pH value. However, the fluorescence intensity of this copolymer shows enhancement with a rise in temperature regardless of pH value in the range of pH = 4–10. In addition, fluorescence suppression of copolymer (PCN250) was observed with high proton concentration. Moreover, the lower critical solution temperature of the copolymers, poly‐(NIPMAM‐co‐CPMA), with different component was also investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Fluorescence‐incorporated, crosslinker‐free, pH‐ and thermoresponsive nanocarriers were prepared by the incorporation of drug molecules into the thermoresponsive nanocapsules, which composed of poly(N‐isopropylacrylamide) (PNIPAAm) with carboxylic acid end groups via temperature induced self‐assembling method. Well‐defined, pH‐responsive carboxylic acid group‐ended PNIPAAm homopolymer (HOOC? PNIPAAm? COOH) was synthesized by reversible addition fragmentation chain transfer polymerization with S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate (CMP) as a chain transfer agent. Rhodamine 6G (R6G), the model drug, was used for three kinds of application: First, the nanostructure fixing; second, the fluorescence‐labeling; and last, the controlled release modeling. The transmission electron microscope images showed the solution type dosing led to the encapsulation of drug molecules into the nanocarriers, while the powder‐type drug‐loading process significantly contributed to the structure preservation of nanocarriers. The controlled release behaviors with various pH values and temperatures were evaluated. These multifunctional nanocarriers have potential to be applied for the biomedical therapy by stimuli‐responsive controlled release. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 561–571  相似文献   

14.
Poly(N‐acryloyl‐N′‐ethyl piperazine‐co‐N‐isopropylacrylamide) hydrogels were prepared by thermal free‐radical copolymerization of N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) in solution using N, N′‐methylene bisacrylamide as the crosslinking agent. The gels were responsive to changes in external stimuli such as pH and temperature. The pH and temperature responsive character of the gels was greatly dependent on the monomer content, namely AcrNEP and NIPAM, respectively. The gels swelled in acidic (pH 2) and de‐swelled in basic (pH 10) solutions with a response time of 60 min. With increase in temperature from 23 to 80 °C the swelling of the gels decreased continuously and this effect was different in acidic and basic solutions. The temperature dependence of equilibrium water content of the gels was evaluated by the Gibbs–Helmholtz equation. Detailed analysis of the swelling properties of these new gels in relation to molecular heterogeneity in acidic (pH 2) and basic (pH 10) solutions were performed. Water transport property of the gels was studied gravimetrically. In acidic solution, the diffusion process was non‐Fickian (anomalous) while in basic solution, the diffusion was quasi‐Fickian. The effect was more evident in solution of pH 2 than in pH 10. Various structural parameters of the gels such as number‐average molar mass between crosslink (Mc), the crosslink density (ρc), and the mesh size (ξ) were evaluated. The mesh sizes of the hydrogels were between 64 and 783 Å in the swollen state in acidic solution and 20 and 195 Å in the collapsed state in basic solution. The mesh size increased between three to four times during the pH‐dependent swelling process. The amount of unbound water (free water) and bound water of the gels was also evaluated using differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) backbone and poly(2‐vinylpyridine) side chains, were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as the catalytic system. The obtained diblock copolymer was transformed into the macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was used for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐vinylpyridine)] double hydrophilic graft copolymer. ATRP of 2‐vinylpyridine was initiated by the macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as the catalytic system. The synthesis of both the backbone and the side chains are controllable. Thermo‐ and pH‐responsive schizophrenic micellization behaviors were investigated by 1H NMR, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (T ≥ 32 °C), whereas the aggregates turned into spheres with PEA‐g‐P2VP‐core accompanied with the lifting of pH values (pH ≥ 5.3) at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 15–23, 2010  相似文献   

16.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

17.
We describe herein the synthesis and self‐assembly characteristics of a doubly responsive AB diblock copolymer comprised of N‐isopropylacrylamide (NIPAM) and 4‐vinylbenzoic acid (VBZ). The AB diblock copolymer was prepared via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization in DMF employing a trithiocarbonate‐based RAFT agent. PolyNIPAM was employed as the macroRAFT agent. The NIPAM homopolymerization was shown to possess all the characteristics of a controlled process, and the blocking with VBZ was judged, by size exclusion chromatography, to be essentially quantitative. The NIPAM‐VBZ block copolymer was subsequently demonstrated to be able to form normal and inverse micelles in the same aqueous solution by taking advantage of the stimuli responsive characteristics of both building blocks. Specifically, and as judged by NMR spectroscopy and dynamic light scattering, raising the temperature to 40 °C (above the lower critical solution temperature of the NIPAM block), while at pH 12 results in supramolecular self‐assembly to yield nanosized species that are composed of a hydrophobic NIPAM core stabilized by a hydrophilic VBZ corona. Conversely, lowering the solution pH to 2.0 at ambient temperature results in the formation of aggregates in which the VBZ block is now hydrophobic and in the core, stabilized by the hydrophilic NIPAM block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5864–5871, 2007  相似文献   

18.
Hydrogels responsive to both temperature and pH have been synthesized in the forms of sequential interpenetrating networks (IPNs) of N‐isopropylacrylamide (NIPAAm) and sodium acrylate (SA) and compared with the crosslinked random copolymers of N‐isopropylacrylamide and SA. Whereas the stimuli‐sensitive behaviors of copolymer hydrogels were strongly dependent on the ionic SA contents, the IPN hydrogels exhibited independent swelling and thermal behaviors of each network component. The sequences and media in the synthesis of IPNs influenced the swelling capacities of the IPNs, but not the temperature or pH ranges at which the swelling changes occurred. In IPNs, a more expanded primary gel network during the synthesis of the secondary network contributed to the better swelling of the final IPNs. Both the swelling and thermal behaviors of the IPNs suggest that poly(N‐isopropylacrylamide) and poly(sodium acrylate) are phase separated regardless of their synthesis conditions. The presence of the poly(sodium acrylate) network did not influence the temperature or the extent of phase transition of the poly(N‐isopropylacrylamide) network in the IPNs, but did improve the thermal stability of the IPNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3293–3301, 2004  相似文献   

19.
The pH‐sensitive tertiary amino groups were introduced to synthesize temperature and pH dual‐sensitive degradable polyaspartamide derivatives (phe/DEAE‐g‐PHPA) containing pendant aromatic structures and ionizable tertiary amino groups. The thermo/pH‐responsive behavior of phe/DEAE‐g‐PHPA polymer can be tuned by adjusting the graft copolymer composition. Due to the pH sensitivity of the phe/DEAE‐g‐PHPA‐g‐mPEG polymer with hydrophilic long PEG chain, the micelles and the anticancer drug‐loaded micelles were prepared by a quick pH‐changing method without using toxic organic solvent. The obtained polymeric micelles, paclitaxel‐loaded micelles and doxorubicin‐loaded micelles were stable under physiological conditions. Both the drug‐loaded micelles showed much faster release at pH 5 than at pH 7.4. The doxorubicin‐loaded micelles showed obvious and better anticancer activity against both HepG2 and HeLa cells than free doxorubicin. Thus these nontoxic, dual thermo‐ and pH‐sensitive phe/DEAE‐g‐PHPA‐g‐mPEG micelles may be a promising anticancer drug delivery system. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 879–888  相似文献   

20.
A series of environmentally sensitive ABA triblock copolymers with different block lengths were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization from acrylic acid (AA) and N‐isopropylacrylamide (NIPAAm). The GPC and 1H NMR analyses demonstrated the narrow molecular weight distribution and precise chemical structure of the prepared P(AA‐b‐NIPAAm‐b‐AA) triblock copolymers owing to the controlled/living characteristics of RAFT polymerization. The lower critical solution temperature (LCST) of the triblock copolymers could be tailored by adjusting the length of PAA block and controlled by the pH value. Under heating, the triblock copolymers underwent self‐assemble in dilute aqueous solution and formed nanoparticles revealed via TEM images. Physically crosslinked nanogels induced by inter‐/intra‐hydrogen bonding or core‐shell micelle particles thus could be obtained by changing environmental conditions. With a well‐defined structure and stimuli‐responsive properties, the P(AA‐b‐NIPAAm‐b‐AA) copolymer is expected to be employed as a nanocarrier for biomedical applications in controlled‐drug delivery and targeting therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1109–1118  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号