首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An investigation of miscibility and isothermal crystallization behavior of Polyamide 6 (PA6)/Poly(vinyl alcohol) (PVA) blends was conducted. Fourier transform infrared spectra (FTIR) analysis indicated that the interactions between the carbonyl groups of PA6 and hydroxyl groups of PVA increase as the weight ratios of PA6 to PVA of PA6/PVA specimens increase. This interaction between PA6 and PVA leads to their miscibility in the amorphous region and even some extent effects on their crystal phase, respectively. Further isothermal crystallization behavior of PA6/PVA indicate that the miscibility of PVA in PA6 leading difficulty in crystallization of PA6. Several kinetics equations are employed to describe the effects of PVA on the crystallization properties of PA6 in PA6/PVA blends in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1360–1368, 2008  相似文献   

2.
Polyamide 6 (PA6)/montmorillonite (MMT) nanocomposites were prepared via melt intercalation. The structure, mechanical properties, and nonisothermal crystallization kinetics of PA6/MMT nanocomposites were investigated by X‐ray diffraction (XRD), tensile and impact tests, and differential scanning calorimetry (DSC). Before melt compounding, MMT was treated with an organic surfactant agent. XRD traces showed that PA6 crystallizes exclusively in γ‐crystalline structure within the nanocomposites. Tensile measurements showed that the MMT additions are beneficial in improving the strength and the stiffness of PA6, at the expense of tensile ductility. Impact tests revealed that the impact strength of PA6/MMT nanocomposites tended to decrease with increasing MMT content. The nonisothermal crystallization DSC data were analyzed by Avrami, Ozawa, modified Avrami‐Ozawa, and Nedkov methods. The validity of these empirical equations on the nonisothermal crystallization process of PA6/MMT nanocomposites is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2878–2891, 2004  相似文献   

3.
Maleated styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) and epoxy monomer, individually or in combination, are used to toughen polyamide 6/glass fiber composites. The epoxy monomer enhanced interaction between polyamide 6 and glass fiber. SEBS-g-MA rubber is uniformly dispersed in polyamide 6 matrix caused by the preferred compatibilizing reaction between the anhydride group of rubber and the amine terminal group of polyamide 6. The addition of epoxy does not affect the fine dispersion of SEBS-g-MA. Polyamide 6/glass fiber binary composites are brittle. The addition of epoxy monomer alone does not change their brittle features. Similarly, in the absence of epoxy monomer, adding 20 wt % of SEBS-g-MA to polyamide 6/glass fiber composites does not greatly increase the tensile ductility. Only when both SEBS-g-MA and epoxy monomer are present in some combination, do the polyamide 6/glass fiber composites show prominent ductile characteristics, such as stress-whitening and necking. This synergistic effect of epoxy monomer and SEBS-g-MA also imparts higher notched impact strengths to the ternary composites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1448–1458, 2007  相似文献   

4.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In order to improve the flame retardancy of glass fibers (GFs) reinforced polyamide 6 (PA6) composites and eliminate the “wicking effect,” the preparation and application of graphene oxide (GO) modified GFs were investigated in this work. Flame retardant PA6 was prepared by blending graphene oxide modified GFs reinforced PA6 and aluminum diethyl phosphonate. For the GFs reinforced PA6, the limiting oxygen index of the composite increased from 20.6% to 22.3%, and peak heat release rate decreased by 37.2% in cone calorimeter test via introducing graphene oxide onto the surface of GFs. Comparing PA6/GF30/ADP15 and PA6/GF‐GO30/ADP15, LOI of the later increased to 31.2%, the vertical burning test (UL‐94) reached V‐0, and the peak heat release rate decreased by 18.0%. The interface compatibility was greatly improved after the introduction of GO. The sheet structure of the GO on the GFs surface could block the combustible gas spillage and the flow of melt along the GFs, thus significantly attenuating the “wicking effect” and improving the flame retardancy of composites.  相似文献   

6.
Polyamide 6 nanocomposites reinforced with Cu/Si nanoparticles (PA6-Cu/Si) were prepared by the in-situ ring-opening polymerization of ?-caprolactam. The in-situ polymerization was critical for preventing the aggregation of Cu/Si nanoparticles. The Cu/Si nanoparticles in the nanocomposite retained their nano characteristics and were not oxidized by the amino groups in PA6. The structure of the as-fabricated PA6-Cu/Si nanocomposite was evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), and ultraviolet-visible absorption spectroscopy (UV-vis). The friction and wear resistance, mechanical strength, and antistatic performance of PA6-Cu/Si were also evaluated. The PA6 polymer chains prevent the Cu/Si nanoparticles from aggregation by coating the surface of the Cu/Si nanoparticles via physical adsorption or an electrostatic effect. The mass fraction of the Cu/Si nanoparticles also had a significant effect on the crystalline form of PA6. The γ crystalline form of PA6 was predominant at a high mass fraction of Cu/Si to PA6. Moreover, PA6-Cu/Si with improved mechanical properties and wear resistance was generated by tuning the amount of nano-Cu/Si filler added during the polymerization. PA6-Cu/Si with a nano-Cu/Si content of 0.5% possesses the highest tensile strength and wear resistance and shows promise in applications as a functional polymer-matrix composite.  相似文献   

7.
The effect of tin fluorophosphate‐glass (Pglass) nanoparticles on the polyamide‐6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by 13C solid‐state nuclear magnetic resonance (NMR). The crystallinity determined by direct‐polarization 13C NMR combined with longitudinal relaxation‐time (T1C) filtering varied between 31 and 44%. T1C‐filtered 13C spectra with cross polarization clearly showed resonances of both the α‐ and γ‐crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the α‐phase. This suggests that the Pglass promotes the growth of the γ‐crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 857–860, 2008  相似文献   

8.
王玉花  程超 《化学研究》2011,22(3):51-55
将有机化的蒙脱土与尼龙6(PA6)在Haake共混机中共混,制备出尼龙6/蒙脱土纳米复合材料(PA6N);对尼龙6/蒙脱土纳米复合材料和纯尼龙6分别进行差示扫描量热法非等温结晶试验,以了解蒙脱土在尼龙6/蒙脱土纳米复合材料中的成核作用、扩大尼龙6在包装领域的应用范围.与此同时,采用偏光显微镜测定了样品的结晶形态;采用紫...  相似文献   

9.
《先进技术聚合物》2018,29(3):1068-1077
The effect of 1,3,5‐triglycidyl isocyanurate (TGIC) as a synergistic agent on the fire retardancy, thermal, and mechanical properties for polyamide 6/aluminium diethylphosphinate (PA6/AlPi) composites were investigated in detail by limiting oxygen index; vertical burning (UL‐94); cone calorimeter; thermal gravimetric analysis; rheological measurements; and the tests of tensile, flexural, and Izod impact strength. The morphologies and chemical compositions of the char residue were investigated by scanning electron microscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectra. The results demonstrated that AlPi and TGIC exerted an evident synergistic effect for flame retardant PA6 matrix, and the PA6/AlPi/TGIC composites with the thickness of 1.6 mm successfully passed UL‐94 V‐0 rating with the limiting oxygen index value of 30.8% when the total loading amount of AlPi/TGIC with the mass fraction of 97:3 was 11 wt%. However, the samples failed to pass the UL‐94 vertical burning tests when AlPi alone is used to flame retardant PA6 matrix with the same loading amount. The thermal gravimetric analysis data revealed that the introduction of TGIC promoted the char residue formation at high temperature. The rheological measurement demonstrated that the incorporation of TGIC improved the storage modulus, loss modulus, and complex viscosity of PA6/AlPi/TGIC composites comparing with that of neat PA6 and PA6/AlPi composites due to the coupling reaction between TGIC and the terminal groups of PA6 matrix. The morphological structures of char residues demonstrated that TGIC benefited to the formation of more homogenous and integrated char layer with no defects and holes on the surface comparing with that of PA6/AlPi composites during combustion. The higher melt viscosity of composites and the integrated and sealed char layer effectively inhibited the volatilization of flammable gas into the combustion zone and then led to the reduction of the heat release. The results of mechanical properties revealed that the incorporation of TGIC enhanced the mechanical properties for PA6/AlPi/TGIC composites comparing with that of PA6/AlPi composites with the same loading amount of flame retardant caused by the chain extension effect of TGIC. As a result, the flame retardancy and mechanical properties of PA6/AlPi composites simultaneously enhanced due to the introduction of TGIC.  相似文献   

10.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

11.
Adverse effects of a high‐water absorption rate on properties of a glass fiber–reinforced polyamide 6 (GF‐PA6) composite significantly reduce performance and limit application in humid environments. In this paper, a polyfunctional silane (PFS) coupling agent with amino (–NH2) and imino (–NH) groups and styrene acrylonitrile copolymer (SAN) were added to a composite, GF‐PA6, to prepare GF‐PA6/SAN/PFS composites via melt blending in a twin‐screw extruder. The effects of SAN and PFS content on the static and dynamic mechanical properties of the composites before and after water absorption were investigated in detail. The microstructure of the fracture surface was analyzed by a scanning electron microscope (SEM). The results show that the addition of SAN and PFS could effectively inhibit water absorption of the GF‐PA6 composites. The alkoxyl groups on PFS reacted chemically with the nitrile groups of SAN, which enriched SAN on the interface between the fiber and matrix during the extrusion and mixing process to improve the effect of water prevention. Therefore, the mechanical properties of the wet state were notably improved while preventing water from permeating the interface by only the addition of a small amount of SAN and PFS. Dynamic mechanical analysis (DMA) results showed that the addition of PFS improved the compatibility of PA6 with SAN and enhanced the interface adhesion between fiber and PA6. In terms of test result of the comprehensive performance, 10 phr SAN with 0.6 phr PFS was the best dosage.  相似文献   

12.
《先进技术聚合物》2018,29(5):1456-1468
Recently, we have reported a novel core‐shell dynamic vulcanization method to prepare poly(vinylidene fluoride) (PVDF)/fluororubber (FKM)/silicone rubber (SR) thermoplastic vulcanizates (TPVs) with cross‐linked rubber core‐shell particles. However, the shell thickness on the properties has not been studied in detail. Herein, these PVDF‐based TPVs different FKM‐shell thickness were prepared by changing FKM/SR ratios. The effect of FKM‐shell/SR‐core ratio on morphology, crystallization, and mechanical properties of the ternary TPVs was studied. The results showed that the FKM shell had more positive effect on interfacial‐induced crystallization behavior than the SR core due to its better compatibility with PVDF. When the FKM/SR ratio was <1, FKM was not enough to encapsulate SR completely, which resulted in the formation of imperfect core‐shell structure. However, when the FKM/SR ratio was >1, perfect core‐shell structure was formed. Therefore, the mechanical properties improved with increasing FKM content; especially, a remarkable improvement was observed when FKM/SR ratio was >1. This study could provide more information for the design of TPVs with core‐shell structure.  相似文献   

13.
Recently, several types of nanoparticles are frequently incorporated in reinforced epoxy resin composites. A homogeneous dispersion of these nanoparticles is still a problem. Thermoplastic nanofibrous structures can tackle this dispersion issue. Therefore, this paper investigated the effect of electrospun polyamide 6 nanofibrous structures on the mechanical properties of a glass fibre/epoxy composite. The nanofibres were incorporated in the glass fibre/epoxy composite as stand-alone interlayered structures and directly spun on the glass fibre reinforcement. Both ways of nanofibre incorporation have no negative effect on the impregnation of the epoxy. Moreover, the nanofibres remain well dispersed within the matrix. Incorporation of nanofibres increases the stress at failure in the 0°-direction, the best results are obtained when the nanofibres are directly electrospun onto the glass fibres. Optical microscopic images also demonstrate that nanofibres prevent delamination when a 90° crack reaches a neighbouring 0° ply. Furthermore, mode I tests showed a small improvement when a thin nanofibrous structure is deposited directly onto the glass fibres. When the composites are loaded under 45°, it is proven that, for an identical stress, the glass fibre composite with deposited nanofibres has less cracks than when interlayered nanofibrous structures are incorporated. Generally, it can be concluded that the addition of polyamide 6 nanofibres improves some mechanical characteristics of a glass fibre/epoxy composite.  相似文献   

14.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

15.
《先进技术聚合物》2018,29(6):1649-1660
Oxygen permeation rates, average volumes of free‐volume‐cavities (Vf), and fractional free volumes (Fv) of polyamide 12 (PA12)/poly(vinyl alcohol) (PVA) (ie, PA12xPVA05y, PA12xPVA08y, and PA12xPVA14y) blend films with varying PVA degrees of polymerization reduced to a minimum value when their PVA contents reached a corresponding optimal value, respectively. The minimum oxygen permeation rates, Vf, and Fv values obtained for the optimal PA12xPVAzy blown films were reduced considerably with decreasing PVA degrees of polymerization. Experimental findings from dynamic mechanical analysis, differential scanning calorimetry, wide angle X‐ray diffraction, and Fourier transform infrared spectroscopy of the PA12xPVAzy blend series suggest that PA12 and PVA in PA12xPVAzy are miscible to some extent at the molecular level when their PVA contents are near and less than the corresponding critical values. The considerably enhanced oxygen barrier properties of the PA12xPVAzy blend films with optimized compositions are attributed to the significantly reduced local free volume characteristics.  相似文献   

16.
The strength of interaction between tin phosphate glass (PGlass) filler droplets and an ethylene‐vinyl alcohol (EVOH) matrix were investigated by image, thermal, and rheological analysis. 10% PGlass droplets in EVOH were smaller than those previously observed in maleated polypropylene. Analysis using the Fox equation showed that EVOH/97 °C Tg PGlass composites are not miscible systems. Dynamic shear and extensional rheology data of those composites exhibited a weak physical network, with relaxation times longer than that of pure EVOH at all strain rates. The tensile properties of the EVOH/10 vol % PGlass composite showed it to be more ductile and flexible than a typical polymer/inorganic filler system, supporting interaction between PGlass and EVOH sufficient to interrupt polymer–polymer hydrogen bonding. While undrawn EVOH/PGlass composite films showed increased oxygen gas permeability when compared to undrawn neat EVOH film, the drawn composite films exhibited oxygen permeability 6–7 times lower than that of neat EVOH, attributed to the presence of high aspect ratio PGlass particles after orientation. The concept of hydrogen bonding between polymer and PGlass can likely be applied to other polymers such as polyamides which possess numerous hydrogen bonding sites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 989–998  相似文献   

17.
A new kind of long-chain aliphatic polyamide (PA1218) with a relatively low melting point, high molecular weight, and stable mechanical properties at humid conditions was successfully developed via a polycondensation reaction between 1,18-octadecanedioic acid and 1,12-diaminodecane. Additionally, oleic acid-surfaced modified silicon dioxide (SSD) was prepared and employed to improve the properties of PA1218 through in-situ polymerization. FT-IR spectra and TGA thermograms confirmed the successful surface modification of nanoparticles, and consequently, 5% substitution of surface hydroxyl groups of SiO2 nanoparticles with oleic acid molecules. Moreover, the thermomechanical and rheology tests revealed a significant improvement in nanocomposites’ properties compared to the pure PA1218; for instance, the tensile strength and storage modulus were increased by 22% and 40%, respectively in the sample containing 3% SSD nanoparticles. This improvement, along with SEM images, confirmed the uniform dispersion of SSD nanoparticles through the employed in-situ polymerization and excellent compatibility between inorganic and organic phases, which was achieved via surface modification. Finally, all the samples demonstrated a water uptake capacity of less than 0.6% attributed to the high methylene/amide ratio in their backbones, causing these newly developed nanocomposites to be notable candidates for specific engineering applications.  相似文献   

18.
The effects of the compatibilizer, styrene maleic anhydride (SMA‐8% MA) upon the change of morphology and molecular dynamics of polyamide‐6 (PA6) and poly (2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were investigated by means of solid‐state NMR techniques. With increasing amounts of SMA, the domains correspond to PA6 and PPO are reduced and the polymer segmental mobility increased. The correlation between NMR relaxation time, T, and the bulk mechanical properties provide a molecular level understanding of the modification of molecular dynamics by the compatibilizer (SMA). The correlation shows that the tensile strength is governed mainly by the morphology, but modulated by the PA6 crystallinity, while the tensile elongation and impact strength are closely affected by both the molecular mobility and morphology. The annealing process improved only the tensile strength, but deteriorated tensile elongation and impact strength due to the increase of PA6 crystallinity, which induced phase separation after annealing. This study raised an important point that the polymer mechanical properties are most sensitive to the molecular structure and dynamics take place within the range of 20 Å to few hundred Å. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1155–1163, 1999  相似文献   

19.
Exfoliated polyamide‐6 (PA6)/organically modified montmorillonite clay (OMMT) nanocomposites (PNs) were modified with partially maleinized styrene–ethylene/butadiene–styrene triblock copolymers (SEBS) at three maleinization levels in an attempt to link in these materials high toughness with appropriate small‐strain and fracture tensile properties. OMMT stayed only in the PA6 matrix, and no preferential location in the matrix/rubber interphase was observed. The increased dispersed phase size upon the addition of OMMT was attributed to interactions between maleic anhydride (MA) functionalized SEBS and the surfactant of OMMT. The rubber particle size generally decreased when the MA content of SEBS increased, and this indicated compatibilization. The subsequent good adhesion led to tough nanocomposites across a wide range of both strain rates and fracture modes. As the critical interparticle distance (τc) decreased with the MA content, and the other parameters that could influence the surface‐to‐surface mean interparticle distance did not change, it is proposed that in these PNs higher adhesion leads to a smaller τc value. Finally, the presence in the matrix of a nanostructured clay makes the rubber content necessary for the toughness jump to increase and τc to decrease. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3611–3620, 2005  相似文献   

20.
Two blends between polyamide 6 (PA6) and Polyamide 6co6T (PA6co6T, a random copolymer between polyamide 6 and polyamide 6T) were fabricated by melt‐mixing on a twin‐screw extruder and the subsequent injection molding, or through the in‐situ polymerization of ε‐caprolactam in the presence of PA6co6T. As far as the former method is concerned, there exist an obvious decline of toughness and a slight increase in strength and modulus; however, for the latter, there appear a remarkable improvement in toughness and a simultaneous moderate increase in strength and modulus. A series of characterizations were carried out including scanning electron microscopy, wide‐angle X‐ray diffraction, polarized optical microscopy, differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared spectrometry. It is found that both blends exhibit single glass transition on DMA tan δ curves. However, contrary to that of the melt‐mixed blends, the glass transition temperature (Tg) of the in‐situ ones decreases with increasing PA6co6T content. It is suggested that different mixing levels are the main reasons. Moreover, the addition of PA6co6T containing linear rigid segments conducts remarkable refinement of spherulites for the blends. Significantly different changes in the crystallographic form, spherulite size, crystalline content and perfection due to the introduction of PA6co6T for the two blends are ascribed to their varied thermomechanical histories and the presence of interchange reaction only for the in‐situ blends. On the basis of the characterizations of the microstructures, the different trends of changes in the mechanical properties with the addition of PA6co6T for the two fabrication methods are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 201–211, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号