首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The molecular structure of the phase—stable at room temperature—for the polymer with formula [ p C6H4 COO p C6H3(R) p C6H3(R) OOC p C6H4 O (CH2)10O ]x, with R =  CH2 CHCH2, is reported. The cell is hexagonal (a = b = 13.43 Å, c = 33.3 Å, γ = 120°), space group P63, six chains per unit cell (dcalcd = 1.23 g cm−3). The six chains are packed together to give a bundle with the center of mass set at the origin of the unit cell. The allyl groups are placed inside the bundle, thus explaining the unexpected reactivity of the double bonds to give crosslinking when fiber samples are annealed in the solid state. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1601–1607, 1999  相似文献   

2.
A new class of organometallic polymer having a backbone of conjugated Poly-yne and Zr-metal atoms has been prepared. Trichloroethylene (TCE) and Hexachlorobutadiene (HCB) are quantitatively converted by n-butyllithium to dilithioacetylene (LiCCLi) and dilithiodiacetylene (Li CC CC Li) respectively. Quenching with Cp2*ZrCl2 affords high yields of the polymers Zr(Cp2*)CCn and Zr(Cp2*)CC CCn where Cp* = C5(CH3)5 = pentamethyl cyclopentadienyl. The Cp2*ZrCl2 and the polymers were characterized by viscosity, molecular weight, elemental analysis, FTIR, NMR spectra, and TGA. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3899–3902, 1999  相似文献   

3.
The polymers consisting of polydiacetylene (PDA) backbones were obtained from the novel monomer derivatives, R CC CC R′ CC CC R [where R =  (CH2)4OCONHCH2COOC4H9, R′ =  (CH2)n ; n = 2, 4, 8] [4BCMU4A(n)], in which linear methylene chain is sandwiched between two diacetylene moieties by solid-state 1,4-addition reaction. The polymerization process was investigated in detail by using spectroscopic techniques such as solid-state 13C-NMR, visible absorption, and IR absorption spectra. It was estimated that the polymerization of 4BCMU4A(8) and 4BCMU4A(4) takes place by two consecutive 1,4-addition reactions to form two PDA backbones, which constitute the two poles of the respective ladders. The bridging methylene chain length in the monomer was found to play a vital role as far as the polymerization process is concerned. Thus, the monomers with eight or four methylene units could form the ladder–PDAs by a two-step process, whereas the monomer containing two methylene units could only undergo one-step of 1,4-addition reaction. Further, it was found that the crystallinity of the polymers depends on the methylene chain length in the monomers, 4BCMU4A(8) being the most crystalline of all. These structural features strongly affect their absorption spectra. The third-order nonlinear optical susceptibilities (χ(3)) for these polymers were measured using third-harmonic generation method. The largest χ(3) value obtained was 3.4 × 10−11 esu for the poly[4BCMU4A(8)] thin film in resonant region. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3537–3548, 1999  相似文献   

4.
Novel chiral N‐propargylphosphonamidate monomers (HC?CCH2NHP(?O)R? O? menthyl, 1 : R = CH3, 2 : R = C2H5, 3 : R = n‐C3H7, 4 : R = Ph) were synthesized by the reaction of the corresponding phosphonic dichlorides with menthol and propargylamine. Pairs of diastereomeric monomers 1 – 4 with different ratios were obtained due to the chiral P‐center and menthyl group. One diastereomer could be separated from another one in the cases of monomers 1 and 2 . Polymerization of 1 – 4 with (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in CHCl3 gave the polymers with number‐average molecular weights ranging from 5000 to 12,000 in 65–85%. Poly( 1 )–poly( 4 ) exhibited quantitative cis contents, and much larger specific rotations than 1 – 4 did in CHCl3. The polymers showed an intense Cotton effect around 325 nm based on the conjugated polyacetylene backbone. It was indicated that the polymers took a helical structure with predominantly one‐handed screw sense, and intramolecular hydrogen bonding between P?O and N? H of the polymers contributed to the stability of the helical structure. Poly( 1a ) and poly( 2a ) decreased the CD intensity upon raising CH3OH content in CHCl3/CH3OH. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1515–1524, 2007  相似文献   

5.
By using the two‐liquid geometric method and the three‐liquid acid‐base method, we are the first to determine the surface tensions of ladderlike polyepoxysiloxanes by the measurement of contact angles on thin films. Three kinds of ladderlike polymers have been synthesized: A C (which has the alkyl group and the epoxy group graft to the ladderlike polysilsesquioxane chain), A C P (which has the alkyl group, phenyl group, and epoxy group graft to the ladderlike chain), and A P (which has the phenyl group and epoxy group in the ladderlike side chain). The results showed that when different liquids and different theories are chosen to determine the surface energies, there are some minor differences in the values but a similar trend is still exhibited. The surface energies of these three polymers are in the following order of γSA C < γSA C P < γSA P. Interestingly, the surface energy increases for these polymers are mainly from the nonpolar part of the polyepoxysiloxanes. XPS surface analysis indicated that the Si and O ratios of these polymers at the air‐polymer interface were in the order of A C > A C P > A P, suggesting Si atoms were more likely to migrate to the polymer surface and the bulky effect of the phenyl groups could also interfere with the migration of the Si atoms. As a result, Si and O ratio at the interface determines the order of apparent surface energy for these three polymers. Experimental data also reflect that there are differences between the ladderlike polyepoxysiloxanes and the commercially available linear polysiloxanes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 138–147, 2000  相似文献   

6.
Aqueous sulfonic acids (HOSO2R; R = CH3, Ph‐p‐CH3, and Ph‐p‐NO2), coupled with a water‐tolerant Lewis acid, ytterbium triflate [Yb(OTf)3; OTf =  OSO2CF3], initiate the cationic suspension polymerization of p‐methoxystyrene (pMOS) in heterogeneous aqueous media. They induce controlled polymerization of pMOS at 30 °C, and the molecular weights of the polymers (weight‐average molecular weight/number‐average molecular weight ∼ 1.7) increase with conversion. These suspension polymerizations are initiated by the entry of sulfonic acid from the aqueous phase into the organic phase and proceed via reversible activation of the sulfonyl terminus by the Lewis acid. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2728–2733, 2000  相似文献   

7.
The heat capacities at constant pressure of liquid perfluoropolyethers with different chain structures were determined above the glass transition temperature up to 480 K by means of differential scanning calorimetry (DSC). The group contributions of the  O , CF2 , and  CF(CF3) were calculated as a function of the temperature. Anomalous behavior of ethereal oxygen in a perfluorinated chain, as previously found for group contributions to the glass transition and to the vaporization energy, was observed also for heat capacity where the oxygen contribution is consistently lower for perfluorinated polyoxides in comparison to the hydrogenated homologous. The jump in cp at the glass transition follows a regular behavior in the sense that ΔCp/beadmole is within the average range found by Wunderlich for the majority of polymers. Moreover, data obtained in the present work allow the prediction of cp of perfluoropolyethers of whatever structure between Tg and 480 K. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2073–2082, 1997  相似文献   

8.
Ni(0)‐complex promoted dehalogenation polymerization of 1,2‐bis(4‐bromophenyl)ethylene derivatives gave poly(p‐biphenylene vinylene) type polymers, [—C6H2R—CR2 = CR2—C6H2R—)n (P(R1,H) and P(H,R2) ], having substituents (R1 = Me, Et, CHMe2, and n‐C8H17, R2 = Me, Et, n‐C6H13, n‐C11H23, and Ph) at the benzene ring or vinylene group in 90–99% yields. The polymers were soluble in organic solvents such as CHCl3, dimethylformamide, and tetrahydrofuran, and gave Mn of 2.4–5.3 × 103 in gel permeation chromatography analysis. The absorption peak of the polymers appeared at a longer wavelength than that of the corresponding monomers by about 30 nm due to the expansion of the π‐conjugation system. The polymers were photoluminescent in solutions and in their films, emitting blue or green light. P(R1,H)s gave higher quantum yields (Φ = 0.35–0.51) than P(H,R2) s in CHCl3. P(H,R2) s showed a large Stokes shift (9600–13,500 cm−1) in their photoluminescence. Single‐layer and multilayer light emitting diodes using vacuum deposited thin film of P(H,Ph) were prepared. Polymers with long alkyl substituents formed an ordered structure in the solid state as judged from their XRD patterns. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1493–1504, 2000  相似文献   

9.
Silylium ions (“R3Si+”) are found to catalyze both 1,4‐hydrosilylation of methyl methacrylate (MMA) with R3SiH to generate the silyl ketene acetal initiator in situ and subsequent living polymerization of MMA. The living characteristics of the MMA polymerization initiated by R3SiH (Et3SiH or Me2PhSiH) and catalyzed by [Et3Si(L)]+[B(C6F5)4] (L = toluene), which have been revealed by four sets of experiments, enabled the synthesis of the polymers with well‐controlled Mn values (identical or nearly identical to the calculated ones), narrow molecular weight distributions (? = 1.05–1.09), and well defined chain structures {H? [MMA]n? H}. The polymerization is highly efficient too, with quantitative or near quantitative initiation efficiencies (I* = 96–100%). Monitoring of the reaction of MMA + Me2PhSiH + [Et3Si(L)]+[B(C6F5)4] (0.5 mol%) by 1H NMR provided clear evidence for in situ generation of the corresponding SKA, Me2C?C(OMe)OSiMe2Ph, via the proposed “Et3Si+”‐catalyzed 1,4‐hydrosilylation of monomer through “frustrated Lewis pair” type activation of the hydrosilane in the form of the isolable silylium‐silane complex, [Et3Si? H? SiR3]+[B(C6F5)4]. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1895–1903  相似文献   

10.
The synthesis and a partial characterization of segmented liquid crystalline polymers with 3,3′-diallyl-4,4′-dihydroxybiphenyl unit in the rigid moiety is reported. The general formula of polymers is [-p-C6H4-COO-p-C6H3(R)-p-C6H3(R)-OOC-p-C6H4-O-(CH2)nO-]x, with n = 6, 8, 10, 12, and R =  CH2 CHCH2. All polymers have nematic liquid-crystalline behavior. At room temperature, annealed fiber samples of polymers show a complex polymorphism. Three phases have been isolated with very large unit cells accommodating 6 or 12 chains. The projection of the molecular packing in a plane perpendicular to the c axis is characterized by the organization of chains in a two-dimensional hexagonal or quasi-hexagonal array. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2371–2378, 1998  相似文献   

11.
Methoxydimethylsilane and chlorodimethylsilane‐terminated telechelic polyoctenomer oligomers (POCT) have been prepared by acyclic diene metathesis (ADMET) chemistry using Grubbs' ruthenium Ru(Cl2)(CHPh)(PCy3)2 [Ru] or Schrock's molybdenum Mo(CH CMe2Ph)(N 2,6 C6H3i Pr2)(OCMe(CF3)2)2 [Mo] catalysts. These macromolecules have been characterized by FTIR, 1H‐, 13C‐, and 29Si‐NMR spectroscopy. The molecular weight distributions of these polymers have been determined by GPC and vapor pressure osmometry (VPO). The number‐average molecular weight (Mn) values of the telechelomers are dictated by the initial ratio of the monomer to the chain limiter. The termini of these oligomers (Mn = 2000) can undergo a condensation reaction with hydroxy‐terminated poly(dimethylsiloxane) (PDMS) macromonomer (Mn = 3300) [HO Si(CH3)2 O { Si(CH3)2O }x  Si(CH3)3], producing an ABA‐type block copolymer, as follows: (CH3)3SiO [ Si(CH3)2O ]x [ CHCH (CH2)6 ]y [ OSi(CH3)2 ]x OSi(CH3)3. The block copolymers were characterized by 1H‐ and 13C‐NMR spectroscopy, VPO, and GPC, as well as elemental analysis, and were determined by VPO to have a Mn of 8600. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 849–856, 1999  相似文献   

12.
Poly(phenylacetylene)s containing L ‐valine residues (P 1 ) with (a)chiral pendant terminal groups R(*) [?(HC?C{C6H4CONHCH[CH(CH3)2]COO? R(*)})n?]; R(*) = 1‐octyl (P 1 o), (1S,2R,5S)‐(+)‐menthyl [P 1 (+)], (1R,2S,5R)‐(?)‐menthyl [P 1 (?)] are designed and synthesized. The polymers are prepared by organorhodium catalysts in high yields (yield up to 88%) with high molecular weights (Mw up to ?6.4 × 105). Their structures and properties are characterized by NMR, IR, TGA, UV, and circular dichroism analyses. All the polymers are thermally fairly stable (Td ≥ 320 °C). The chiral moieties induce the poly(phenylacetylene) chains to helically rotate in a preferred direction. The chirality of the pendant terminal groups affects little the helicity of the polymers but their bulkiness stabilizes the helical conformation against solvent perturbation. The backbone conjugation and chain helicity of the polymers can be modulated continuously and reversibly by acid. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2117–2129, 2006  相似文献   

13.
Alkali and earth‐alkali salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as monomers in the polyesterification with an α,ω‐dihalide monomer, such as 1,4‐dichlorobutane (DCB), 1,4‐dibromobutane (DBB), α,α′‐dichloro‐p‐xylene (DCX), and α,α′‐dibromo‐p‐xylene (DBX). Novel linear polymers that possessed repeating moieties of dicyclopentadiene ( DCPD ) in the backbone were thus prepared. The IR and NMR spectra indicated that poly(tetramethylene dicyclopentadiene dicarboxylate) (PTMDD) with a number‐average molecular weight (Mn ) of about 1× 104 and poly(p‐xylene dicyclopentadiene dicarboxylate) (PXDD) with a Mn of 4–6 × 103 were obtained with an yield of about 80% via the polyesterification of the alkali salts with DBB and DCX, respectively. The reaction was carried out in the presence of a phase transfer catalyst, such as BzMe3NBr or poly(ethylene glycol), in DMF at 100 °C for 4 h. Oligomers with a lower Mn (1–2 × 103) were obtained when the earth‐alkali salts were employed as salt monomers. Compared to the irreversible linear polymers, poly(p‐xylene terephthalate) (PXTP) and poly(p‐xylene maleate) (PXM), prepared through the reaction between DCX and the potassium salts of terephthalic and maleic acid, respectively, the specific viscosities (ηsp) of the new linear polymers increased abnormally with the decrease of the temperature from 200 °C to 100 °C. This occurred due to the thermally reversible dedimerization/redimerization of  DCPD moieties of the backbone of the polymers via the catalyst‐free Diels–Alder/retro Diels–Alder cycloadditive reactions. The ratio of the ηsp at 100 °C and 200 °C of the reversible polymers was found to be much higher than that of PXTP and PXM, even when the heating/cooling cycle was carried out several times under a N2 atmosphere. The obtained results indicated that thermally reversible covalently bonded linear polymer can be obtained by introducing the  DCPD structure into the backbone of the polymer through the polymerization of a monomer containing the  DCPD moiety. The reversible natures of the polymers and oligomers might be useful in preparing easily processable and recyclable polymers and thermosensor materials. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1662–1672, 2000  相似文献   

14.
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010  相似文献   

15.
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005  相似文献   

16.
2,2,6,6‐Tetramethyl‐1‐piperidinyloxy (TEMPO)‐ and 2,2,5,5‐tetramethyl‐1‐pyrrolidinyloxy (PROXYL)‐containing (R)‐1‐methylpropargyl TEMPO‐4‐carboxylate ( 1 ), (R)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 2 ), (rac)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 3 ), (S)‐1‐propargylcarbamoylethyl TEMPO‐4‐carboxylate ( 4 ), and (S)‐1‐propargyloxycarbonylethyl TEMPO‐4‐carboxylate ( 5 ) (TEMPO, PROXYL) were polymerized to afford novel polymers containing the TEMPO and PROXYL radicals at high densities. Monomers 1–3 and 5 provided polymers with moderate number‐average molecular weights of 8200–140,900 in 49–97% yields in the presence of (nbd)Rh+[η6‐C6H5B?(C6H5)3], whereas 4 gave no polymer with this catalyst but gave polymers possessing low Mn (3800–7500) in 56–61% yield with [(nbd)RhCl]2‐Et3N. Poly( 1 ), poly( 2 ), and poly( 4 ) took a helical structure with predominantly one‐handed screw sense in THF and CHCl3 as well as in film state. The helical structure of poly( 1 ) and poly( 2 ) was stable upon heating and addition of MeOH, whereas poly( 4 ) was responsive to heat and solvents. All of the free radical‐containing polymers displayed the reversible charge/discharge processes, whose capacities were in a range of 43.2–112 A h/kg. In particular, the capacities of poly( 2 )–poly( 5 )‐based cells reached about 90–100% of the theoretical values regardless of the secondary structure of the polymer, helix and random. Poly( 1 ), poly( 2 ), and poly( 4 ) taking a helical structure exhibited better capacity tolerance towards the increase of current density than nonhelical poly( 3 ) and poly( 5 ) did. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5431–5445, 2007  相似文献   

17.
The reaction of 1,2 ethanedithiol (EDT) with selenous acid in water or alcohol leads to selenopolysulfide chains or cycles, (C2H4SSeSC2H4SS)n, with randomly distributed  SSeS and  SS moieties. The reaction in water produces incompletely reacted material, which on recrystallization, gives an oligomer corresponding to 5 EDT units (pentamer) as confirmed by molecular mass determination, Se analysis, 1H- and 77Se-NMR spectroscopy. In both the pentamer and cyclic forms the incidence of neighboring  SSeS moieties is higher than that expected statistically. The mechanism for the reaction of thiols with selenous acid provides some rationalization for this observation in as much as neighboring  SSeS groups, or groups that will lead rapidly to neighboring  SSeS groups are formed in general before  SS links can be formed. The Raman spectrum of these products show typical strong SS, SeS, and CS stretching bands at 510, 370, and 730 cm−1. The high frequency of νCS is attributed to a preferred gauche conformation at the CS bonds. For comparison, polydisulfides were also prepared from EDT and iodine in methanol. These products consist of at least seven cyclic polymers ranging from the four-membered 1,2-dithietane to higher members. Heating above 100°C in chloroform for several hours gives a solution containing the four lowest molecular mass rings, which on standing for 24 h, precipitate highly insoluble material, which is probably chain or large-ring polymer. Molecular mass determination in camphor indicates that, like yellow sulphur, chain polymers are formed at the melting point of camphor (170°C). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 379–390, 1998  相似文献   

18.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

19.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

20.
1‐Pentynes containing different amino acid moieties and pendant terminal groups {HC?C(CH2)2CONHC(R′)HCO2CH3, where R′ = CH3, CH2CH(CH3)2, CH2C6H5, and HC?C(CH2)2CONHC[CH2CH(CH2)3]HCO2‐(1R,2S,5R)‐(+)‐menthol} have been designed and synthesized. The polymerizations of the monomers are effected by organorhodium catalysts, giving soluble polymers with moderate molecular weights in satisfactory yields. The structures and properties of the polymers have been characterized and evaluated with infrared, nuclear magnetic resonance, thermogravimetric analysis, circular dichroism, and ultraviolet analyses. All the polymers are thermally stable (≥300 °C) and show strong circular dichroism signals at ~310 nm because of the helicity of the polyene backbone. The circular dichroism and ultraviolet absorptions of the polymers can be tuned with a solvent. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6190–6201, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号