首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 1,4-benzenedicarboxylic acid (1,4-H(2)BDC) with EuCl(3).6H(2)O in MeOH in the presence of Et(3)N and MeCN gives a mixture of the 3-D metal-organic-framework (MOF) materials [Eu(2)(1,4-BDC)(3)(MeOH)(4)].8MeOH () and 2-D [Eu(1,4-BDC)(MeOH)(4)].Cl.MeOH.0.25H(2)O (). Similar reactions afforded the isomorphous Gd () and Tb () analogs of . Reaction of 1,4-H(2)BDC with Ln(NO(3))(3).6H(2)O under similar conditions gave [Ln(BDC)NO(3)(MeOH)(2)].MeCN.H(2)O (Ln = Eu () and Gd ()), which have 2-D framework structures. The structures of were determined by single crystal X-ray crystallographic studies and the luminescence properties of and in DMF solution were determined.  相似文献   

2.
A structurally diverse array of polynuclear complexes has been identified and structurally characterized from the reaction of 6-methylpyridine-2-methanol (1) with a range of cobalt(II) salts under a variety of reaction conditions. A tetranuclear cubane, [Co4(1-H)4Cl4(H2O)3(CH3OH)], was isolated from the reaction of 1 with CoCl2.6H2O and NaOH in MeOH, and a tetranuclear double cubane, [Co4(1-H)6(NO3)2], was isolated from the reaction of 1 with Co(NO3)2.6H2O and NEt3 in MeOH. A bowl-shaped trinuclear complex, [Co3(1-H)3Cl3(dmso)], which features a triply bridging dmso ligand, assembled upon mixing 1 and CoCl2.6H2O in dmso. A 1-D coordination polymer, [Co(1)2(SO4)](infinity), where the sulfate ligands bridge "[Co(1)2]" units in a mu2:eta1 fashion to build up the polymer structure, was isolated from the reaction of 1 with CoSO4.7H2O. The reaction of the structurally related ligand 8-hydroxyquinaldine (2) with a mixture of CoCl2.6H2O and Co(OAc)2.4H2O lead to the formation of the tetranuclear double cubane, [Co4(2-H)6Cl2]. Temperature-dependent magnetic measurements have also been performed for these five complexes along with the hydrogen-bonded helicate [Co2(1)2(1-H)2]. The hydrogen bonds of the helicate mediate antiferromagnetic interactions between the cobalt(II) centers (J = -3.18(9) cm(-1), g = 2.25(2)). The sulfate bridging ligands of [Co(1)2(SO4)](infinity) are poor mediators of magnetic exchange. The Co(II) centers in the double-cubane complexes [Co4(1-H)6(NO3)2] and [Co4(2-H)6Cl2] are strongly antiferromagnetically coupled to each other at low temperature to give an S = 0 ground state. [Co4(1-H)4Cl4(H2O)3(MeOH)] exhibits rather complicated magnetic behavior; however, we did not observe any evidence for single-molecule magnetism as was seen for structurally related complexes.  相似文献   

3.
Luminescent pentanuclear tetra-decker Ln(III) complexes [Eu5L4(OH)2(NO3)4(H2O)2].NO3.3H2O , [Nd5L4(OH)2(NO3)5MeOH].3MeOH.2H2O and [Eu5L4(CF3SO3)4(MeO)2(H2O)4].CF3SO3.H2O are formed from Ln(NO3)3.6H2O (Ln = Eu (1), Nd (2)) and Eu(CF3SO3)3, respectively (H2L = N,N'-bis(5-bromo-3-methoxysalicylidene)phenylene-1,2-diamine).  相似文献   

4.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

5.
Anaerobic reaction of Co(O2CMe)2.4H2O with the thioether-containing acyclic pyrazine amide hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H2L1) (-CH2CH2- spacer between the two pyrazine amide tridentate coordination units) furnishes [CoII(L1)].MeOH (1a) having CoN2(pyrazine)N'2(amide)S2(thioether) coordination. It exhibits an eight-line EPR spectrum, attesting to a low-spin (S = 1/2) state of CoII. A similar reaction in air, however, furnishes [CoIII(L3a)(L3b)].2MeOH (2a) (S = 0), resulting from a C-S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyrazine)N'2(amide)S(thioether)S'(thiolate) coordination. On the other hand, the reaction of Co(O2CMe)2.4H2O with 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,5-dithiopentane (H2) (-CH2CH2CH2- spacer between the two pyrazine amide tridentate coordination units) in air affords a cobalt(II) complex [CoII(L2)].MeOH (1b.MeOH) (S = 1/2); its structurally characterized variety has the composition 1b.C6H6. Interestingly, 1b.MeOH undergoes facile metal-centred oxidation by aerial O2-H2O2-[Fe(eta5-C5H5)2][PF6], which led to the isolation of the corresponding cobalt(iii) complex [CoIII(L2)][ClO4] (2b). When treated with methanolic KOH, 2b affords a low-spin (S = 0) organocobalt(III) complex [Co(III)((L2')] (3). Structures of all complexes, except 1a, have been authenticated by X-ray crystallography. A five-membered chelate-ring forming ligand L1(2-) effects C-S bond cleavage and a six-membered chelate-ring forming ligand L2(2-) gives rise to Co-C bond formation, in cobalt(III)-coordinated thioether functions due to alpha C-H bond activation by the base. A rationale has been provided for the observed difference in the reactivity properties. The spectroscopic properties of the complexes have also been investigated. Cyclic voltammetry experiments in MeCN-CH2Cl2 reveal facile metal-centred reversible-to-quasireversible CoIV-CoIII (or a ligand-centred redox process; 2a), CoIII-CoII (1a, 1b.MeOH, 2a, 2b and 3), CoII-CoI (1a, 1b.MeOH, 2aand 2b), and CoI-Co0 (1a, 1b.MeOH and 2b) redox processes.  相似文献   

6.
A series of cyanide-bridged chain mixed Fe(III)/Ln(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb) complexes with the tridentate ligand 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz) used as a capping group has been prepared. Reactions of tptz and LnCl3 with K3Fe(CN)6 yield a family of air-stable 1-D compounds {[Pr(tptz)(H2O)4Fe(CN)6].8H2O}infinity, {[Nd(tptz)(H2O)4Fe(CN)6].8H2O}infinity, {[Sm(tptz)(H2O)4Fe(CN)6].8H2O}, {[Eu(tptz)(H2O)4Fe(CN)6].6H2O}infinity, {[Gd(tptz)(H2O)4Fe(CN)6].6H2O}infinity, and {[Tb(tptz)(H2O)4Fe(CN)6].8H2O}infinity. Temperature dependent magnetic susceptibility studies of reveal that in , the Sm(III) and Fe(III) ions are ferromagnetically coupled with 3-D ordering occurring below 3.5 K. The appearance of the frequency dependent out-of-phase signal is explained in terms of an ordering with a spin glass-like behavior. To compare the magnetic behavior of with related compounds, {[Sm(tptz)(H2O)4Co(CN)6].8H2O}infinity and {[La(tptz)(DMF)(H2O)3Fe(CN)6].5H2O}infinity, {[Sm(tmphen)(DMF)3(H2O)Fe(CN)6].2H2O}infinity, {[Sm(tmphen)2(H2O)2Fe(CN)6].MeOH.13H2O}infinity and {[Sm(tmphen)2(H2O)2Cr(CN)6].MeOH.9H2O}infinity with 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) were also prepared.  相似文献   

7.
Multinuclear 3d-4f complexes with sandwichlike molecular structures are formed with the Schiff-base ligand bis(3-methoxysalicylidene)ethylene-1,2-phenylenediamine(H(2)L). The stoichiometry and structures are dependent on the Zn:Nd ratio and counteranions present. They are trinuclear [Nd(ZnL)2(NO3)2(H2O)2].NO3.EtOH.H2O (1), [Nd(ZnL)2Cl2(H2O)3].Cl.2MeOH.5H2O (2), and tetranuclear [Nd2(ZnL)2Cl6(MeOH)2].MeOH (3). Dinuclear complex [NdZnL(NO3)3MeCN].MeCN (4) was also characterized. Near-infrared (NIR) lanthanide luminescence is observed in these complexes.  相似文献   

8.
The coordination chemistry of 6-methylpyridine-2-methanol (1) and enantiopure (R)-1-(6-methylpyridin-2-yl)ethanol (2) with a range of divalent first-row transition metal salts has been investigated in an effort to determine whether hydrogen-bonded helicates will form, as observed for cobalt(II) salts. Hydrogen-bonded helicates, [Cu2(1)2(1-H)2X2] (X = Cl, Br), were only observed upon combining 1 with CuCl2 and CuBr2 in MeOH solution. Other metal salts led to alternative products, viz. Cu(ClO4)2 in the presence of base gives [Cu2(1)2(1-H)2](ClO4)2, ZnCl2 and ZnBr2 give the 1-D helical coordination polymers [Zn(1-H)Cl]infinity and [Zn(1-H)Br]infinity, a mixture of NiCl2 and Ni(OAc)2 produces the [Ni4(1-H)4Cl2(OAc)2(MeOH)2] cubane, NiCl2 leads to the [Ni4(1-H)4Cl4(MeOH)4] cubane, while MnCl2 gives the known cubane [Mn4(1-H)6Cl4]. The reaction of 2 with CuCl2 produces the mononuclear complex Lambda-[Cu(2)2Cl]Cl, while reaction with CuBr2 leads to a dimer, Lambda,Lambda-[Cu2(2)3(2-H)Br2]Br, which is held together by a single hydrogen bond between the monomeric subunits. The solid-state CD spectra of these latter complexes were recorded and found to be very similar. The temperature-dependent magnetic behavior of [Cu2(1)2(1-H)2X2] (X = Cl, Br), [Cu2(1)2(1-H)2](ClO4)2, [Cu2(2)3(2-H)Br2]Br, and [Ni4(1-H)4Cl2(OAc)2(MeOH)2] was investigated. Weak antiferromagnetic coupling between the copper(II) centers is mediated by the hydrogen bonds in the [Cu2(1)2(1-H)2X2] (X = Cl, Br) complexes.  相似文献   

9.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

10.
A novel redox-active bipyridinium ligand N-(3-carboxyphenyl)-4,4ˊ-bipyridinium chloride (HCPBPyCl) and its coordination polymer {[Cd2(CPBPy)2(BDC)(H2O)2Cl2]·6H2O}n 1 (H2BDC = benzene-1,4-dicarboxylic acid) were synthesized and characterized. Crystallographic data for 1: C42H44Cd2Cl2N4O16, Mr = 1156.51, monoclinic, space group C2/c, a = 21.046(3), b = 11.0036(15), c = 20.012(3) , β = 98.694(8)°, Z = 4, V = 4581.1(11) 3, Dc = 1.677 g/cm3, F(000) = 2280 and μ = 1.120 mm-1. Complex 1 possesses a thick and undulated two-dimensional layer with (6,3) topology, which interpenetrates with two others (above and below) to extend into a three-di-mensional supramolecular framework.  相似文献   

11.
The direct reaction of europium with 2-propanol and phenols has been investigated under a variety of conditions. The reaction of europium metal with 2,6-dimethylphenol and 2,6-diisopropylphenol in 2-propanol at reflux revealed that polymetallic europium complexes could be generated by this method. Hx[Eu8O6(OC6H3Me2-2,6)12(OiPr)8], 1, and H5[Eu5O5(OC6H3iPr2-2,6)6(NCCH3)8], 2, were isolated by recrystallization in the presence of hexanes and acetonitrile, respectively, and characterized by X-ray crystallography. Complex 1 has a cubic arrangement of europium ions with face-bridging mu 4-O donor atoms, edge-bridging mu-O(phenoxide/phenol) ligands, and terminal O(isopropoxide/2-propanol) ligands. Complex 2 is mixed valent and has a square pyramidal europium core with four Eu(II) ions at the basal positions and one Eu(III) ion at the apex. Since these reactions gave complicated mixtures of products from which 1 and 2 could only be obtained in low yields, direct reactions under less forcing reaction conditions were investigated. Europium reacts slowly at room temperature to form arene-soluble divalent [Eu(OiPr)2(THF)x]n, 3. Complex 3 reacts with 2,6-dimethylphenol to form the arene-insoluble complex (H[Eu(OC6H3Me2)2(OiPr)])n, 4. Recrystallization of 4 in the presence of THF results in the crystallographically characterizable divalent trimetallic complex [Eu(OC6H3Me2-2,6)2(THF)2]3, 5, which has an unusual linear metal geometry. In the presence of HOiPr at ambient conditions in the glovebox, crystals of 5 slowly convert to the mixed valent H10[Eu8O8(OC6H3Me2-2,6)10(OiPr)2(THF)6], 6, which was found to have a cubic arrangement of europium atoms similar to 1 by X-ray crystallography. Complex 4, upon heating under vacuum, followed by reaction with THF, forms the arene-soluble divalent complex H18([Eu9O8(OC6H3Me2-2,6)10(THF)7][Eu9O9(OC6H3Me2-2,6)10(THF)6]), 7, which contains two types of capped cubic arrangements of europium ions in the solid state.  相似文献   

12.
[Cp*Rh(eta1-NO3)(eta2-NO3)] (1) reacted with pyrazine (pyz) to give a dinuclear complex [Cp*Rh(eta1-NO3)(mu-pyz)(0.5)]2.CH2Cl2(3.CH2Cl2). Tetranuclear rectangles of the type [Cp*Rh(eta1,mu-X)(mu-L)(0.5)]4(OTf)4(4a: X = N3, L = bpy; 4b: X = N3, L = bpe; 4c: X = NCO, L = bpy) were prepared from [Cp*Rh(H2O)3](OTf)2 (2), a pseudo-halide (Me3SiN3 or Me3SiNCO), and a linear dipyridyl [4,4'-bipyridine (bpy) or trans-1,2-bis(4-pyridyl)ethylene (bpe)] by self-assembly through one-pot synthesis at room temperature. Treating complex with NH4SCN and dipyridyl led to the formation of dinuclear rods, [Cp*Rh(eta1-SCN)3]2(LH2) (5a: L = bpy; 5b: L = bpe), in which two Cp*Rh(eta1-SCN)3 units are connected by the diprotonated dipyridyl (LH2(2+)) through N(+)-H...N hydrogen bonds. Reactions of complex 2 with 1-(trimethylsilyl)imidazole (TMSIm) and dipyridyl (bpy or bpe) also produced another family of dinuclear rods [Cp*Rh(ImH)3]2.L (6a: L = bpy; 6b: L = bpe). Treating 1 and 2 with TMSIm and NH4SCN (in the absence of dipyridyl) generated a 1-D chain [Cp*Rh(ImH)3](NO3)2 (7) and a 1-D helix [Cp*Rh(eta1-SCN)2(eta1-SHCN)].H2O (8.H2O), respectively. The structures of complexes 3.CH2Cl2, 4a.H2O, 4c.2H2O, 5b, 6a, 7 and 8.H2O were determined by X-ray diffraction.  相似文献   

13.
Han Y  Li X  Li L  Ma C  Shen Z  Song Y  You X 《Inorganic chemistry》2010,49(23):10781-10787
A series of 3-D lanthanide porous coordination polymers, [Ln(6)(BDC)(9)(DMF)(6)(H(2)O)(3)·3DMF](n) [Ln = La, 1; Ce, 2; Nd, 3], [Ln(2)(BDC)(3)(DMF)(2)(H(2)O)(2)](n) [Ln = Y, 4; Dy, 5; Eu, 6], [Ln(2)(ADB)(3)(DMSO)(4)·6DMSO·8H(2)O](n) [Ln = Ce, 7; Sm, 8; Eu, 9; Gd, 10], {[Ce(3)(ADB)(3)(HADB)(3)]·30DMSO·29H(2)O}(n) (11), and [Ce(2)(ADB)(3)(H(2)O)(3)](n) (12) (H(2)BDC = benzene-1,4-dicarboxylic acid and H(2)ADB = 4,4'-azodibenzoic acid), have been synthesized and characterized. In 1-3, the adjacent Ln(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), that constructed a 3-D framework with 4 × 7 ? rhombic channels. In 4-6, the dimeric Ln(III) ions are interlinked to yield scaffolds with 3-D interconnecting tunnels. Compounds 7-10 are all 3-D interpenetrating structures with the CaB6-type topology structure. Compound 11 is constructed by ADB spacers and trinulcear Ce nodes with a NaCl-type topology structure and a 1.9-nm open channel system. In 12, the adjacent Ce(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), and give rise to a 3-D framework. Moreover, 6 exhibits characteristic red luminescence properties of Eu(III) complexes. The magnetic susceptibilities, over a temperature range of 1.8-300 K, of 3, 6, and 7 have also been investigated; the results show paramagnetic properties.  相似文献   

14.
The title coordination polymer,[Zn (L) (1,4-BDC)]n (1) (L =2-(4-fluorophenyl)-1H-imidazo [4,5-f] [1,10] phenanthroline and 1,4-H2BDC=1,4-benzenedicarboxylic acid) has been synthesized by hydrothermal method and characterized by elemental analysis,IR and single-crystal X-ray diffraction. It crystallizes in triclinic,space group P1 with a=0.970 85(16) nm,b=1.076 98(18) nm,c=1.203 6(2) nm,α=63.894(2)°,β=69.051(2)°,γ=80.427(2)°,V= 1.055 4(3) nm3,Z=2,C27H15FN4O4Zn,Mr=543.80,Dc=1.711 g·cm-3,F(000)=552,μ(Mo Kα)=1.220 mm-1,R=0.037 2 and wR=0.084 4. The 1,4-BDC ligands linked the Zn(Ⅱ) atoms to form a two-dimensional layer structure. The π-π stacking interactions between L ligands extended the adjacent layers into a three-dimensional supramolecular network. Finally,the N-H…O hydrogen bonds further stabilizes the structure of 1.  相似文献   

15.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

16.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

17.
Seven new coordination polymers, [Co()(1,3-BDC)(H(2)O)(3)]·H(2)O (), [Co()(1,2-BDC)(H(2)O)]·H(2)O (), [Co(3)()(1,2,4-BTC)(2)(H(2)O)(4)]·4H(2)O (), [Co()(NPH)]·2H(2)O (), [Cu()(1,3-BDC)] (), [Cu()(1,2-BDC)] (), [Cu()(1,3,5-HBTC)(H(2)O)](2)·2H(2)O () ( = N,N'-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide, 1,3-H(2)BDC = 1,3-benzenedicarboxylic acid, 1,2-H(2)BDC = 1,2-benzenedicarboxylic acid, 1,2,4-H(3)BTC = 1,2,4-benzenetricarboxylic acid, H(2)NPH = 3-nitrophthalic acid and 1,3,5-H(3)BTC = 1,3,5-benzenetricarboxylic acid) have been hydrothermally synthesized by assembling transition-metal cobalt-copper salts with semi-rigid bis-pyridyl-bis-amide ligand and different aromatic polycarboxylic acids. Complex exhibits a one-dimensional (1D) sinusoidal-like chain, which is further assembled into a three-dimensional (3D) supramolecular framework through hydrogen-bonding interactions. Complex possesses a 3D framework with 4-connected 6(6) topology, which contains a two-dimensional (2D) distorted asymmetric hexagonal grid. When 1,2,4-BTC is used in complex , a 3D framework with (6(3)·8(2)·10)(2)(6(5)·8)(2)(8) topology is constructed. Complex possesses a 3D framework with 4-connected 6(6) topology, which is similar to that of except for containing a 2D symmetric hexagonal grid. When Co(II) ion is replaced by Cu(II) ion, the 3D framework of complex with (4·6(2))(4·6(6)·8(3)) topology based on and 1,3-BDC ligands is obtained. Complex shows a 2D cross network consisting of a superposed Cu- 1D chain and 1,2-BDC, which is further expanded into a 3D supramolecular framework by hydrogen-bonding interactions. In complex , 1,3,5-HBTC is employed as the auxiliary ligand, and a 3D supramolecular framework based on the undulated 2D layers is formed through π-π stacking and hydrogen-bonding interactions. Both the metal ions and polycarboxylates play important roles in the construction of the title complexes. In addition, the electrochemical behaviors and the fluorescence properties of the seven complexes have been investigated.  相似文献   

18.
The title complex, [Cd(Pyphen)(1,4-BDC)(H2O)]·0.5Pyphen (1) (Pyphen=pyrazino[2,3-f][1,10]phenanthr-oline and 1,4-H2BDc=1,4-benzenedicarboxylic acid) has been obtained by using hydrothermal synthesis and characterized by elemental analysis, IR, fluorescence spectrum and single-crystal X-ray diffraction. It crystallizes in orthorhombic, space group Pbcn with a=2.489 2(5) nm, b=0.967 88(19) nm, c=2.057 0(4) nm, V=4.955 9(17) nm3, Z=8, CdC29H18N6O4, Mr=642.89, Dc=1.723 g·cm-3, F(000)=2 576, μ(Mo Kα)=0.937 mm-1, R=0.039 6 and wR=0.102 6. The compound 1 exhibits one-dimensional chain structures, which are further stacked through π-π interactions to form supramolecular layers. Solid-state luminescent spectrum of the complex 1 indicates intense fluorescent emission. CCDC: 679004.  相似文献   

19.
Preparation and Crystal Structures of LaCl_3(12-crown-4)(MeOH)and[LaCl_3(phen)_2(H_2O)]·MeOHMaoJiang-Gao(FujianInstituteofResea...  相似文献   

20.
The novel complexes [Zn(L)Cl] (1), [Cd(L)Cl] (2), [Hg(L)Cl] (3), {[Hg(L)Cl].NaOH.2H2O} (3.NaOH.2H2O), and {[Hg3(HL)2Cl6].2H2O} (4) (L = -SCH2CH2NH2) were prepared and investigated by means of IR spectroscopy and single-crystal X-ray diffraction. The crystal structures of 1, 2, and 3.NaOH.2H2O show chelating N,S-coordination of the cysteaminate ligand, bridging S, and terminally coordinating Cl. Apart from these common features, the coordination geometries and modes of intermolecular association are different. 1 forms a cyclic tetramer with a Zn4S4 ring, and 3.NaOH.2H2O contains one-dimensional [Hg(L)Cl]n chains with S-bridged Hg atoms. Zn and Hg atoms in 1 and 3.NaOH.2H2O are tetracoordinate with a distorted tetrahedral M(ClNS2) geometry (M = Zn, Hg). Each Cd atom of 2 binds to three S atoms and vice versa, such that layers of distorted Cd3S3 hexagons are formed. 2 is the first example for a compound exhibiting a group 12-group 16 layer structure, which can be described as an analogue of a graphite layer. Additionally, each Cd atom binds to a chlorine atom and a nitrogen atom from a cysteaminate ligand resulting in pentacoordination with a distorted trigonal bipyramidal Cd(ClNS3) geometry. 4 contains two differently coordinate Hg atoms. One displays a distorted trans-octahedral Hg(Cl4S2) geometry, while the other is coordinated by four Cl atoms and one S atom and additionally forms a long Hg...Cl contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号