首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A one‐pot synthesis of pyrrolo[1,2‐a]quinolin‐1‐ones has been developed from the reactions of 5‐hydroxy‐1‐arylpyrrolidin‐2‐ones with 1,3‐dicarbonyl compounds under the promotion of H3PO4/P2O5 or HOAc/H2SO4. The pyrrolo[1,2‐a]quinolin‐1‐ones are formed by two‐step reactions, that is, the coupling of N‐acyliminium ion intermediates produced from 5‐hydroxy‐1‐arylpyrrolidin‐2‐ones with 1,3‐dicarbonyls and subsequent Friedel–Crafts reactions of the resulting ketone with the aryl ring.  相似文献   

2.
Dipetalolactone and 4‐methyldipetalolactone are prepared in excellent yield by a one‐pot tandem propargylation/Claisen rearrangement/cyclization reaction of the corresponding 5,7‐dihydroxycoumarins with 3‐chloro‐3‐methylbut‐1‐yne in the presence of Cs2CO3 under microwave irradiation. The analogous reactions of propargyl chloride with esculetins or 5,7‐dihydroxycoumarins led to dipropargyloxy derivatives. The later by treatment with gold nanoparticles supported on TiO2 or BF3.Et2O in N,N‐dimethylformamide (DMF) under microwave irradiation resulted in very good to excellent yield to the corresponding fused dipyranocoumarins. The reactions of esculetins with 3‐chloro‐3‐methylbut‐1‐yne gave mainly exomethylene fused dioxino[g]coumarins.  相似文献   

3.
An increasing number of biocatalytic oxidation reactions rely on H2O2 as a clean oxidant. The poor robustness of most enzymes towards H2O2, however, necessitates more efficient systems for in situ H2O2 generation. In analogy to the well‐known formate dehydrogenase to promote NADH‐dependent reactions, we here propose employing formate oxidase (FOx) to promote H2O2‐dependent enzymatic oxidation reactions. Even under non‐optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.  相似文献   

4.
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N‐substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo‐boration cyclisation reaction, which afforded the 5‐alkylidene‐4,5‐dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1‐carboboration is favoured as a result of the increased steric hindrance (1,3‐allylic strain) in the 5‐alkylidene‐4,5‐dihydrooxazolium borate species.  相似文献   

5.
The reaction of allyl palladium(II) chloride dimer and 4,4′‐bis(RfCH2OCH2)‐2,2′‐bpy, 1a–b , in the presence of AgOTf resulted in the synthesis of cationic palladium complex, [Pd(η3‐allyl)(4,4′‐bis‐(RfCH2OCH2)‐2,2′‐bpy)](OTf), 2a–b where Rf = C9F19 ( a ), C10F21 ( b ), respectively. The reaction of [PdCl2(CH3CN)] or K2PdCl4 with 1b , gave rise to the synthesis of [PdCl2(4,4′‐bis‐(C10F21CH2OCH2)‐2,2′‐bpy)], 3b . The quantitatively determined solubility curves of 2a–b and 3b in DMF indicated dramatic increase of solubility for 2a – b and 3b from ?40 to 90 °C. The catalyst‐recoverable Pd‐catalyzed Heck/Sonogashira reactions were successfully achieved in DMF with microwave‐assistance. The cationic Pd‐catalyzed Heck arylation of methyl acrylate was selected to demonstrate the feasibility of recycling 2a–b using DMF as a solvent under microwave‐assisted thermomorphic conditions. At the end of each cycle, the product mixtures were cooled, and then the catalysts were recovered by decantation. The Heck arylation catalyzed by 2b under microwave‐assisted mode exhibited good recycling results favoring the trans product. To our knowledge, this is the first example of cationic Pd‐catalyzed Heck arylation under microwave‐assisted thermomorphic conditions. Additionally, recoverable 3b ‐catalyzed Sonogashira reactions were also achieved successfully in DMF. The reactions under microwave‐assistance gave much better results in yield and in efficiency than that under conventional thermal heating.  相似文献   

6.
Metal‐air batteries, especially Li‐air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li2CO3, making the battery less rechargeable. To make the Li‐CO2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO2 reduction and evolution reactions and investigate the electrochemical behavior of Li‐CO2 batteries. Here, we demonstrate a rechargeable Li‐CO2 battery with a high reversibility by using B,N‐codoped holey graphene as a highly efficient catalyst for CO2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as‐prepared Li‐CO2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long‐term cycling stability over 200 cycles at a high current density of 1.0 A g−1. Our results open up new possibilities for the development of long‐term Li‐air batteries reusable under ambient conditions, and the utilization and storage of CO2.  相似文献   

7.
A cobalt–porphyrin catalyst encapsulated in a cubic M8L6 cage allows cyclopropanation reactions in aqueous media. The caged‐catalyst shows enhanced activities in acetone/water as compared to pure acetone. Interestingly, the M8L6 encapsulated catalyst reveals size‐selectivity. Smaller substrates more easily penetrate through the pores of the “molecular ship‐in‐a‐bottle catalysts” and are hence converted faster than bigger substrates. In addition, N‐tosylhydrazone sodium salts are easy to handle reagents for cyclopropanation reactions under these conditions.  相似文献   

8.
Pd(OAc)2‐catalyzed Sonogashira coupling reactions of alkynes and a variety of aryl halides with 1,3‐bis(5‐ferrocenylisoxazoline‐3‐yl)benzene as an efficient non‐phosphorus ligand under copper‐free conditions are presented. The main advantages over previous methodologies include low catalyst loading (0.2 mol% Pd(OAc)2 and 0.4 mol% ferrocenyl bisoxazoline ligand are sufficient for these coupling reactions), less problematic reaction medium (water–dimethylformamide) and more convenient operation (no requirement for nitrogen protection).  相似文献   

9.
A wide variety of functionalised imidazolidine‐2‐ones and ‐thiones, 2‐imino‐imidazolidines and thiazolidine‐2‐thiones have been synthesised under very mild reaction conditions by using simple and cost‐effective alkaline earth bis(amide) precatalysts, [Ae{N(SiMe3)2}2(THF)2] (Ae=Mg, Ca, Sr). The reactions ensue with 100 % atom efficiency as one‐pot cascades from simple, commercially available terminal alkyne and heterocumulene reagents. The reactions take place through the initial assembly of propargylamidines, which are utilised in subsequent cyclisation reactions through addition of the isocyanate, isothiocyanate and, in one case, carbon disulfide reagents. This reactivity is deduced to take place through a well‐defined sequence of heterocumulene hydroacetylenation and alkyne hydroamidation steps, which are all mediated at the alkaline earth centre. The rate and regioselectivity of the cyclisation reactions are, thus, found to be heavily dependent upon the identity of the catalytic alkaline earth centre employed. Similarly, the selectivity of the reactions was observed to be profoundly affected by stereoelectronic variations in the individual substrates, albeit by a similar Group 2‐centred reaction mechanism in all cases studied.  相似文献   

10.
In this study, a novel heterogeneous palladium catalyst was synthesized by anchoring palladium onto ethylenediaminetetraacetic acid (EDTA)‐coated Fe3O4@SiO2 magnetic nanocomposite and used for the Suzuki and Sonogashira cross‐coupling reactions. The properties of the magnetic catalyst were characterized by FT‐IR, XRD, TEM, FE‐SEM, DLS EDX, XPS, N2 adsorption‐desorption isotherm analysis, TGA, VSM, elemental analysis and the loading level of Pd in catalyst was measured to be 0.51 mmol/g by ICP. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes with phenylboronic acid without any additive or ligand under green conditions. Furthermore, we have reported this recyclable catalytic system for Sonogashira cross‐coupling reactions of various aryl halides (I, Br, Cl) under copper and ligand‐free conditions in the presence of DMF/H2O (1:2/v:v) as a solvent. The magnetic catalyst could also be separated by an external magnet and reused six times without any significant loss of activity.  相似文献   

11.
《中国化学》2017,35(9):1349-1365
Transition‐metal catalyzed oxidation reactions are central components of organic chemistry. On behalf of green and sustainable chemistry, molecular oxygen (O2) has been considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characters, and therefore offers attractive academic and industrial prospects. In recent years, some powerful organic oxidation methods have been continuously developed. Among them, the use of molecular oxygen (O2) as a green and sustainable oxidant has attracted considerable attentions. However, the development of new transition metal‐catalyzed protocols using O2 as an ideal oxidant is highly desirable but very challenging because of the low standard electrode potential of O2 to reoxidize the transition‐metal catalysts. In this Account, we highlight some of our progress toward the use of transition‐metal catalyzed aerobic oxidation reactions. Through the careful selection of ligand and the acidic additives, we have successfully realized the reoxidation of Cu, Pd, Mn, Fe, Ru, Rh, and bimetallic catalysts under O2 or air atmosphere (1 atm) for the oxidative coupling, oxygenation reactions, oxidative C‐H/C‐C bond cleavage, oxidative annulation, and olefins difunctionalization reactions. Most of the reactions can tolerate a range of functional groups. These methods provide new strategies for the green synthesis of alkynes, (α ‐keto)amides/esters, ketones/diones, O/N‐heterocycles, β ‐azido alcohols, and nitriles. The high efficiency, low cost, and simple operation under air make these methodologies very attractive and practical. We will also discuss the mechanisms of these reactions which might be useful to promote the new type of aerobic oxidative reaction design.  相似文献   

12.
The influence of a two‐step chemical activation on 1,5‐H and 1,6‐H shift reactions of hydroxyl‐peroxy radicals formed in the atmospheric photooxidation of isoprene was investigated by means of a master equation analysis. To account for multiple chemical activation processes, three master equations were coupled. The general approach of this coupling is described, and consequences for steady‐state regimes are examined. The specific calculations show that chemical activation has no substantial influence on the rate coefficients of the above‐mentioned reactions under tropospheric conditions. However, it is demonstrated that high‐pressure limits of the thermal rate coefficients instead of the falloff‐corrected values have to be used for kinetic modeling. This is a consequence of the continuous population of the high‐energy part of the isoprene‐OH‐O2 adduct distribution by the forming reactions under steady‐state conditions. The rate coefficients of the isomerization reactions at T = 298 K were calculated to be k3a = 1.5 × 10?3 s?1 (1,5‐H‐shift of the 1,2‐isomer) and k4a = 6.5 s?1 (1,6‐H‐shift of the (Z)‐1,4‐isomer). The calculated value of k4a is three orders of magnitude larger than a recently reported experimentally observed rate coefficient for the hydrogen shift reactions of the hydroxyl‐peroxy intermediates. It is shown that this discrepancy is in part due to the fact that the experiment does not distinguish between different structural isomers. A comparison of the experimentally determined isotope effect with the calculated value shows a reasonable agreement.  相似文献   

13.
The atom‐transfer carbonylation reaction of various alkyl iodides thereby leading to carboxylic acid esters was effectively accelerated by the addition of transition‐metal catalysts under photoirradiation conditions. By using a combined Pd/ reaction system, vicinal C‐functionalization of alkenes was attained in which α‐substituted iodoalkanes, alkenes, carbon monoxide, and alcohols were coupled to give functionalized esters. When alkenyl alcohols were used as acceptor alkenes, three‐component coupling reactions, which were accompanied by intramolecular esterification, proceeded to give lactones. Pd‐dimer complex [Pd2(CNMe)6][PF6]2, which is known to undergo homolysis under photoirradiation conditions, worked quite well as a catalyst in these three‐ or four‐component coupling reactions. In this metal/radical hybrid system, both Pd radicals and acyl radicals are key players and a stereochemical study confirmed the carbonylation step proceeded through a radical carbonylation mechanism.  相似文献   

14.
Bulky diarylammonium pentafluorobenzenesulfonates effectively promote dehydration reactions, such as condensation reactions to give esters and the dehydrative cyclization of 1,3,5‐triketones. In particular, N‐(2,6‐diphenylphenyl)‐N‐mesitylammonium pentafluorobenzenesulfonate shows much higher catalytic activity than C6F5SO3H under reaction conditions without the removal of generated water, even though the former is a weaker acid. Its crystallization gives an aggregated cyclic ion pair, which is composed of two diarylammonium cations, four pentafluorobenzenesulfonate anions, and two oxonium cations. This ion pair is strongly stabilized by four intermolecular and two intramolecular π–π attractive interactions and 10 hydrogen bonds. The extremely high catalytic activity of N‐(2,6‐diphenylphenyl)‐N‐mesitylammonium pentafluorobenzenesulfonate in the dehydration reactions may be ascribed to the local hydrophobic environment of the tightly aggregated ammonium salts.  相似文献   

15.
A new and efficient methodology for the synthesis of 2‐substituted benzimidazoles is described. In this procedure, CS2 unexpectedly facilitated the cyclization reaction between benzene‐1,2‐diamine and benzenecarbaldehydes in CH2Cl2 at room temperature. The reactions occur under mild conditions require simpler equipment and easier workup procedures.  相似文献   

16.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   

17.
The electrochemical reduction of WCl6 results in the formation of an active olefin (alkene) metathesis catalyst. The application of the WCl6–e?–Al–CH2Cl2 catalyst system to cross‐metathesis reactions of non‐functionalized acyclic olefins is reported. Undesirable reactions, such as double‐bond shift isomerization and subsequent metathesis, were not observed in these reactions. Cross‐metathesis of 7‐tetradecene with an equimolar amount of 4‐octene generated the desired cross‐product, 4‐undecene, in good yield. The reaction of 7‐tetradecene with 2‐octene, catalyzed by electrochemically reduced tungsten hexachloride, resulted in both self‐ and cross‐metathesis products. The cross‐metathesis products, 2‐nonene and 6‐tridecene, were formed in larger amounts than the self‐metathesis products of 2‐octene. The optimum catalyst/olefin ratio and reaction time were found to be 1 : 60 and 24 h, respectively. The cross‐metathesis of symmetrical olefins with α‐olefins was also studied under the predetermined conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The regioselective effects of tert‐butyl or bromine as the position‐protecting group of feruloytyamide on the oxidative coupling reactions for the synthesis of natural (±)‐canabisin D were investigated in detail. The coupling yield of 8‐8‐coupled aryldihydronaphthalene product of 5‐Br‐feruloytyamide was higher than that of tert‐butyl substituted precursor under FeCl3·6H2O‐acetone‐water oxidative condition.  相似文献   

19.
The reactions of platinum(II) complexes, [PtCl2(dach)] (dach = (1R,2R)‐1,2‐diaminocyclohexane) and [PtCl2(en)] (en = ethylenediamine) with biologically relevant ligands such as 5′‐GMP (guanosine‐5′‐monophosphate) and l ‐His (l ‐histidine) were studied by UV–vis spectrophotometry, 1H NMR spectroscopy, and high‐performance liquid chromatography (HPLC). Spectrophotometrically, these reactions were investigated under pseudo‐first‐order conditions at 310 K in 25 mM Hepes buffer (pH 7.2) and 10 mM NaCl to prevent the hydrolysis of the complexes. The [PtCl2(en)] complex reacts faster than [PtCl2(dach)] in the reaction with studied nucleophiles. This confirms the fact that the reactivity of studied Pt(II) complexes depends on the structure of the inert bidentate ligand. Also, the substitution reactions with l ‐His are always faster than the reactions with nucleotide 5′‐GMP. The reactions of [PtCl2(dach)] and [PtCl2(en)] complexes with l ‐histidine are studied by 1H NMR spectroscopy. The obtained rate constants are in agreement with those obtained by UV–vis. The same reactions were studied by HPLC comparing the obtained chromatograms during the reaction. The changes in intensity of signals of the free and coordinated ligand show that after a few days there is only one dominant product in the system. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 99–106, 2011  相似文献   

20.
A new high‐yielding, operationally simple, solvent‐free, and mild method for preparation of pyrazolines, tetrahydrocarbazoles, and indoles has been developed using KHSO4 · H2O impregnated on SiO2. The reactions have been probed under microwave irradiation (MWI), and ultrasonic and thermal conditions, employing different solid supports. The data revealed that KHSO4 · H2O impregnated on SiO2 under MWI provides the best yields in a shorter time under solvent‐free reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号