首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We explain the (non-)validity of close-to-equilibrium entropy production principles in the context of linear electrical circuits. Both the minimum and the maximum entropy production principles are understood within dynamical fluctuation theory. The starting point are Langevin equations obtained by combining Kirchoff’s laws with a Johnson-Nyquist noise at each dissipative element in the circuit. The main observation is that the fluctuation functional for time averages, that can be read off from the path-space action, is in first order around equilibrium given by an entropy production rate. That allows to understand beyond the schemes of irreversible thermodynamics (1) the validity of the least dissipation, the minimum entropy production, and the maximum entropy production principles close to equilibrium; (2) the role of the observables’ parity under time-reversal and, in particular, the origin of Landauer’s counterexample (1975) from the fact that the fluctuating observable there is odd under time-reversal; (3) the critical remark of Jaynes (1980) concerning the apparent inappropriateness of entropy production principles in temperature-inhomogeneous circuits.  相似文献   

2.
We discuss the transient and steady state fluctuation relation for a mechanical system in contact with two deterministic thermostats at different temperatures. The system is a modified Lorentz gas in which the fixed scatterers exchange energy with the gas of particles, and the thermostats are modelled by two Nosé-Hoover thermostats applied at the boundaries of the system. The transient fluctuation relation, which holds only for a precise choice of the initial ensemble, is verified at all times, as expected. Times longer than the mesoscopic scale, needed for local equilibrium to be settled, are required if a different initial ensemble is considered. This shows how the transient fluctuation relation asymptotically leads to the steady state relation when, as explicitly checked in our systems, the condition found in (D.J. Searles, et al., J. Stat. Phys. 128:1337, 2007), for the validity of the steady state fluctuation relation, is verified. For the steady state fluctuations of the phase space contraction rate Λ and of the dissipation function Ω, a similar relaxation regime at shorter averaging times is found. The quantity Ω satisfies with good accuracy the fluctuation relation for times larger than the mesoscopic time scale; the quantity Λ appears to begin a monotonic convergence after such times. This is consistent with the fact that Ω and Λ differ by a total time derivative, and that the tails of the probability distribution function of Λ are Gaussian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号