首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

2.
In the present paper, we consider an abstract partial differential equation of the form $\frac{{\partial ^2 u}}{{\partial t^2 }} - \frac{{\partial ^2 u}}{{\partial x^2 }} + A\left( {x,t} \right)u = f\left( {x,t} \right)$ , where $\left\{ {A\left( {x,t} \right):\left( {x,t} \right) \in \bar G} \right\}$ is a family of linear closed operators and $\bar G = G \cup \partial G,G$ is a suitable bounded region in the (x, t)-plane with boundary?G. It is assumed thatu is given on the boundary?G. The objective of this paper is to study the considered Dirichlet problem for a wide class of operatorsA(x, t). A Dirichlet problem for non-elliptic partial differential equations of higher orders is also considered.  相似文献   

3.
Let (G, ·) be a group, (H, +) be an abelian group, and ${f:G\rightarrow H}$ . The second order Cauchy difference of f is $$C^{(2)}f(x,y,z)=f(xyz)-f(xy)-f(yz)-f(xz)+f(x)+f(y)+f(z).$$ The functional equation $$C^{(2)}f(x,y,z)=0$$ is studied. We present its general solution on free groups. Solutions on other selected groups are also given.  相似文献   

4.
Let a quasilinear control system having the state space \(\bar X \subseteq R^n \) be governed by the vector differential equation $$\dot x = G(u(t))x,$$ wherex(0) =x 0 andU is the family of all bounded measurable functions from [0,T] intoU, a compact and convex subset ofR m.LetG:U ?R be a bounded measurable nonlinear function, such thatG(U) is compact and convex.G ?1 can be convex onG(U) or concave. The main results of the paper establish the existence of a controluU which minimizes the cost functional $$I(u) = \int_0^T {L(u(t))x(t)dt,} $$ whereL(·) is convex. A practical example of application for chemical reactions is worked out in detail.  相似文献   

5.
In a bounded simple connected region G ? ?3 we consider the equation $$L\left[ u \right]: = k\left( z \right)\left( {u_{xx} + u_{yy} } \right) + u_{zz} + d\left( {x,y,z} \right)u = f\left( {x,y,z} \right)$$ where k(z)? 0 whenever z ? 0.G is surrounded forz≥0 by a smooth surface Γ0 with S:=Γ0 ? {(x,y,z)|=0} and forz<0 by the characteristic \(\Gamma _2 :---(x^2 + y^2 )^{{\textstyle{1 \over 2}}} + \int\limits_z^0 {(---k(t))^{{\textstyle{1 \over 2}}} dt = 0} \) and a smooth surface Γ1 which intersect the planez=0 inS and where the outer normal n=(nx, ny, nz) fulfills \(k(z)(n_x^2 + n_y^2 ) + n_z^2 |_{\Gamma _1 } > 0\) . Under conditions on Γ1 and the coefficientsk(z), d(x,y,z) we prove the existence of weak solutions for the boundary value problemL[u]=f inG with \(u|_{\Gamma _0 \cup \Gamma _1 } = 0\) . The uniqueness of the classical solution for this problem was proved in [1].  相似文献   

6.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

7.
For a givenρ(1/2 <ρ < + ∞) let us set L ρ = {z: |arg z| = π/(2ρ)} and assume that a real valued measurable function ?(t) such that ?(t) ≥ 1(t ∈ L ρ ) and \(\mathop {\lim }\limits_{|t| \to + \infty } \varphi (t) = + \infty (t \in L_\rho )\) is defined on L ρ . Let C ? (L ρ ) denote the space of continuous functionsf(t) on L ρ such that \(\lim \tfrac{{f(t)}}{{\varphi (t)}} = 0\) , where the norm of an elementf is defined as: \(\parallel f\parallel = \mathop {\sup }\limits_{t \in L_\rho } \tfrac{{|f(t)|}}{{\varphi (t)}}\) . In this note we pose the question about the completeness of the system of functions of the Mittag-Leffler type {Eρ(ut; μ)} (μ ≥ 1, 0 ≤ u ≤a) or, what is the same thing, of the system of functions \(p(t) = \int_0^a {E_\rho (ut;\mu )d\sigma (u)} \) in C ? (L ρ ). The following theorem is proved: The system of functions of the Mittag-Leffler type is complete in C ? (L ρ ) if and only if sup |p(z)| ≡ +∞, z ∈ L ρ , where the supremum is taken over the set of functions p(t) such that ∥p(t) (t + 1)?1 ∥ ≤ 1.  相似文献   

8.
A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on L^p (\Omega _a ,dv_\lambda ),1< p< \infty $ , is obtained, where $\Omega _a = \left\{ {\xi = (z,w) \in \mathbb{C}^{n + m} :z \in \mathbb{C}^n ,w \in \mathbb{C}^m ,|z|^2 + |w|^{2/a}< 1} \right\},h(\xi ) = (1 - |z|^2 )^a - |w|^2 $ andK x,u,v (ξ,ξ′).This generalizes the works in literature from the unit ball or unit disc to the weakly pseudoconvex domain ω a . As an appli cation, it is proved thatf?L H p a ,dv λ) implies $h\tfrac{{|a|}}{a} + |\beta |(\xi )D_2^a D_z^\beta f \in L^p (\Omega _a ,dv_\lambda ),1 \leqslant p< \infty $ , for any multi-indexa=(α1,?,α n and ß = (ß1, —ß). An interesting question is whether the converse holds.  相似文献   

9.
Let ${{\varphi}}$ be an analytic self-map of the open unit disk ${{\mathbb{D}}}$ in the complex plane ${{\mathbb{C}, H(\mathbb{D})}}$ the space of complex-valued analytic functions on ${{\mathbb{D}}}$ , and let u be a fixed function in ${{H(\mathbb{D})}}$ . The weighted composition operator is defined by $$(uC_{\varphi}f)(z) = u(z)f({\varphi}(z)), \quad z \in \mathbb{D}, f \in H(\mathbb{D}).$$ In this paper, we study the boundedness and the compactness of the weighted composition operators from the minimal Möbius invariant space into the Bloch space and the little Bloch space.  相似文献   

10.
We prove that the equation $$2\bar z\partial _{\bar z} \bar w = 0_1 z \in G,$$ in whichB(z)C (G),B 0(z)=O(|z})α),α>0,z → 0, and $$b(\varphi ) = \sum\limits_{k = - m_o }^m {b_k e^{ik\varphi } } $$ does not have nontrivial solutions in the classC (G).  相似文献   

11.
First-order necessary and sufficient conditions are obtained for the following quasilinear distributed-parameter optimal control problem: $$max\left\{ {J(u) = \int_\Omega {F(x,u,t) d\omega + } \int_{\partial \Omega } {G(x,t) \cdot d\sigma } } \right\},$$ subject to the partial differential equation $$A(t)x = f(x,u,t),$$ wheret,u,G are vectors andx,F are scalars. Use is made of then-dimensional Green's theorem and the adjoint problem of the equation. The second integral in the objective function is a generalized surface integral. Use of then-dimensional Green's theorem allows simple generalization of single-parameter methods. Sufficiency is proved under a concavity assumption for the maximized Hamiltonian $$H^\circ (x,\lambda ,t) = \max \{ H(x,u,\lambda ,t):u\varepsilon K\} $$ .  相似文献   

12.
We characterize functional equations of the form ${f(zf(z))=f(z)^{k+1},z\in\mathbb {C}}$ , with ${k\in\mathbb N}$ , like those generalized Dhombres equations ${f(zf(z))=\varphi (f(z))}$ , ${z\in\mathbb C}$ , with given entire function ${\varphi}$ , which have a nonconstant polynomial solution f.  相似文献   

13.
Let ? and g be nonconstant meromophic functions sharing four values IM and satisfying ??1({a}) ? ?1({b}) for two values a, b not shared by ? and g. Then either ? = T o g with a Möbius transformation T or \(f=L\ {\rm o}\ \hat{f}\ {\rm o}\ h\) and \(g=L\ {\rm o}\ \hat{g}\ {\rm o}\ h\) , where \(\hat{f}(z)=({\rm exp}\ z+1)/({\rm exp}\ z-1)^2\) and \(\hat{g}(z)=({\rm exp}\ z+1)^2/(8({\rm exp}\ z-1))\) are the functions in Gundersen’s example [1], L is a Möbius transformation and h is an entire function.  相似文献   

14.
For the nonlinear equation $$L[u]: = k(y)u_{xx} + u_{yy} = g(x, y, u, u_x , u_y )$$ inG, bounded by a piecewise smooth curveΓ 0 fory>0 which intersects the liney=0 at the pointsA(?1,0) andB (0, 0) and fory<0 by the characteristicsΓ 1 andΓ 2 through the pointsA andB which intersect at the pointC, the uniqueness of boundary value problems i) \(u|_{\Gamma _0 \cup \Gamma _1 } = \varphi \) and ii) \(d_n u|_{\Gamma _0 } = k(y)u_x dy - u_y dx|_{\Gamma _0 } = \varphi ds,u|_{\Gamma _1 } = \psi \) is proved by the energy-integral method.  相似文献   

15.
Let $\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}$ denote the generating function of the ruler function, and $\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}$ ; note that the special value $\mathcal{F}(1/2)$ is the sum of the reciprocals of the Fermat numbers $F_{n}:=2^{2^{n}}+1$ . The functions $\mathcal{F}(z)$ and $\mathcal{G}(z)$ as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers $\mathcal {F}(\alpha)$ and $\mathcal{G}(\alpha)$ are transcendental for all algebraic numbers α which satisfy 0<α<1. For a sequence u, denote the Hankel matrix $H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}$ . Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |α?p/q|<q ?μ has infinitely many solutions (p,q)∈?×?. In this paper, we first prove that the determinants of $H_{n}^{1}(\mathbf {g})$ and $H_{n}^{1}(\mathbf{f})$ are nonzero for every n?1. We then use this result to prove that for b?2 the irrationality exponents $\mu(\mathcal{F}(1/b))$ and $\mu(\mathcal{G}(1/b))$ are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.  相似文献   

16.
We construct integral operatorsR r andH r on the spaces of differential forms of the type (o, r) withr <q on a regularq-concave CR manifoldM such that $$f(z) = \bar \partial _M R_r (f)(z) + R_{r + 1} (\bar \partial _M f)(z) + H_r (f)(z),$$ for a differential formf ∈ L (0,r) s (M) and forz ∈ M′ ?M, whereH r is compact andR r admits sharp estimates.  相似文献   

17.
We prove a conjecture of Ambrus, Ball and Erdélyi that equally spaced points maximize the minimum of discrete potentials on the unit circle whenever the potential is of the form $$\begin{aligned} \sum _{k=1}^n f(d(z,z_k)), \end{aligned}$$ ∑ k = 1 n f ( d ( z , z k ) ) , where $f:[0,\pi ]\rightarrow [0,\infty ]$ f : [ 0 , π ] → [ 0 , ∞ ] is non-increasing and convex and $d(z,w)$ d ( z , w ) denotes the geodesic distance between z and w on the circle.  相似文献   

18.
Пусть $$f_n (z) = \exp \{ \lambda _n z\} [1 + \psi _n (z)], n \geqq 1$$ гдеψ n (z) — регулярны в н екоторой односвязно й областиS, λ n — нули целой функц ии экспоненциальног о ростаL(λ) с индикатрис ой ростаh(?), причем $$|L\prime (\lambda _n )| > C(\delta )\exp \{ [h(\varphi _n ) - \varepsilon ]|\lambda _n |\} \varphi _n = \arg \lambda _n , \forall \varepsilon > 0$$ . Предположим, что на лю бом компактеK?S $$|\psi _n (z)|< Aq^{|\lambda |_n } , a< q< 1, n \geqq 1$$ гдеA иq зависит только отK. Обозначим через \(\bar D\) со пряженную диаграмму функцииL(λ), через \(\bar D_\alpha \) — смещение. \(\bar D\) на векторα. Рассмотр им множестваD 1 иD 2 так ие, чтоD 1 иD 2 и их вьшуклая обо лочкаE принадлежатS. Пусть \(\bar D_{\alpha _1 } \subset D_1 , \bar D_{\alpha _2 } \subset D_2 \) Доказывается, что сущ ествует некоторая об ластьG?E такая, что \(\mathop \cup \limits_{\alpha \in [\alpha _1 ,\alpha _2 ]} \bar D_\alpha \subset G\) и дляzG верна оценка $$\sum\limits_{v = 1}^n {|a_v f_v (z)|} \leqq B\max (M_1 ,M_2 ), M_j = \mathop {\max }\limits_{t \in \bar D_j } |\sum\limits_{v = 1}^n {a_v f_v (t)} |$$ , где константаB не зав исит от {a v }.  相似文献   

19.
The initial-value problem for $$u_t=-\Delta^2 u - \mu\Delta u - \lambda \Delta |\nabla u|^2 + f(x)\qquad \qquad (\star)$$ is studied under the conditions ${{\frac{\partial}{\partial\nu}} u={\frac{\partial}{\partial\nu}} \Delta u=0}$ on the boundary of a bounded convex domain ${\Omega \subset {\mathbb{R}}^n}$ with smooth boundary. This problem arises in the modeling of the evolution of a thin surface when exposed to molecular beam epitaxy. Correspondingly the physically most relevant spatial setting is obtained when n?=?2, but previous mathematical results appear to concentrate on the case n?=?1. In this work, it is proved that when n??? 3,??? ?? 0, ???>?0 and ${f \in L^\infty(\Omega)}$ satisfies ${{\int_\Omega} f \ge 0}$ , for each prescribed initial distribution ${u_0 \in L^\infty(\Omega)}$ fulfilling ${{\int_\Omega} u_0 \ge 0}$ , there exists at least one global weak solution ${u \in L^2_{loc}([0,\infty); W^{1,2}(\Omega))}$ satisfying ${{\int_\Omega} u(\cdot,t) \ge 0}$ for a.e. t?>?0, and moreover, it is shown that this solution can be obtained through a Rothe-type approximation scheme. Furthermore, under an additional smallness condition on??? and ${\|f\|_{L^\infty(\Omega)}}$ , it is shown that there exists a bounded set ${S\subset L^1(\Omega)}$ which is absorbing for ${(\star)}$ in the sense that for any such solution, we can pick T?>?0 such that ${e^{2\lambda u(\cdot,t)}\in S}$ for all t?>?T, provided that ?? is a ball and u 0 and f are radially symmetric with respect to x?=?0. This partially extends similar absorption results known in the spatially one-dimensional case. The techniques applied to derive appropriate compactness properties via a priori estimates include straightforward testing procedures which lead to integral inequalities involving, for instance, the functional ${{\int_\Omega} e^{2\lambda u}dx}$ , but also the use of a maximum principle for second-order elliptic equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号