首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP) has been prepared by aldol condensation between 2,5-dimethylpyrazine and pyridine-3-carboxaldehyde. It is characterized by IR, 1H NMR, and 13C NMR. The electronic absorption and emission properties of BPEP were studied in different solvents. BPEP displays a slight solvatochromic effect of the absorption and emission spectrum, indicating a small change in dipole moment of BPEP upon excitation. The dye solutions (1 × 10?4 M) in CHCl3, EtOH and dioxane give laser emission in blue region upon excitation by a 337.1 nm nitrogen pulse (λ = 337 nm). The tuning range, gain coefficient (α) and emission cross – section (σe) have been determined. Ground and excited states electronic geometric optimizations were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond analysis complemented the ICT. The simulated maximum absorption and emission wavelengths are in line the observed ones in trend, and are proportionally red-shifted with the increase of the solvent polarity. The stability, hardness and electrophilicity of BPEP in different solvents were correlated with the polarity of the elected solvents. BPEP dye displays fluorescence quenching by colloidal silver nanoparticles (AgNPs). The fluorescence data reveal that radiative and non-radiative energy transfer play a major role in the fluorescence quenching mechanism.  相似文献   

2.
Nonlinear optical response of Au island films to femtosecond laser pulses is studied in the vicinity but not exactly at the surface plasmon absorption peak (λ spr = 560 nm). The third-order nonlinear optical susceptibility is shown to be Reχ (3) = +1.7 × 10?7 esu and Reχ (3) = +1 × 10?7 esu at the wavelengths 800 and 460 nm, respectively. Kinetics of the optical nonlinear response has been studied for wavelengths 400 and 800 nm. It is believed that the origin of nonlinearity at the wavelengths is related to the free-electron heating in the conduction band and their further thermalization via electron–electron scattering, but at 400 nm the contribution to the nonlinear susceptibility because of interband d → s, p transitions is also possible.  相似文献   

3.
Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R?2.155 in fairly good agreement with experimental values reported in the literature.  相似文献   

4.
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215–250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame (φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2–8×10?6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10?6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.  相似文献   

5.
Abstract: Raman spectroscopy investigations of l(+)-ascorbic acid and its mono- and di-deprotonated anions (AH? and A2?) are reviewed and new measurements reported with several wavelengths, 229, 244, 266, 488, and 532 nm. Results are interpreted, assisted by new DFT/B3LYP quantum chemical calculations with 6-311++G(d,p) basis sets for several conformations of ascorbic acid and the anions. Raman spectra were measured during titration with NaOH base in an oxygen-poor environment to avoid fluorescence when solutions were alkaline. The ultraviolet (UV) absorption band for ascorbic acid in aqueous solution at ~247 nm was found to cause strong resonance enhancement for the ring C?C stretching mode (called B) at ~1692 cm?1. The ascorbate mono-anion absorbs at ~264.8 nm giving Raman resonance enhancement for the same ring C–C bond stretching, downshifted to ~1591 cm?1. Finally, for the ascorbate di-anion, absorption was found at ~298.4 nm with molar absorptivity of ~7,000 L mol?1 cm?1 and below ~220 nm. With UV light (244 and 266 nm), strongly basic solutions gave pronounced Raman resonance enhancement at ~1556 cm?1. Relatively weak preresonance enhancement was seen for A2? when excitation was done with 229 nm UV light, allowing water bands to become observable as for normal visible light Raman spectra.  相似文献   

6.
两种新型芴类衍生物的三光子吸收特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了两种新型芴类衍生物9,9_二(2_乙基已基)_2,7_二咔唑_9H_芴(简记为DCZF)和9 ,9_二(2_乙基已基)_2,7_二(2_(4_甲氧基)苯_2,1_乙烯基)芴(简记为BMOSF)在N ,N_二甲基甲酰胺(DMF)中的线性吸收和单光子荧光行为,并用脉冲宽度为38ps,重复 频率为10 Hz的1064 nm Nd:YAG脉冲激光研究了两种化合物的三光子吸收性质.结果表明: 两种新材料的最大线性吸收峰分别位于330和380nm,吸收区域覆盖了270—420 nm波段. 两种化合物的荧光带位于蓝_紫区,中心波长为369和442 nm,都具有较小的斯托克斯位移. 化合物DCZF和BMOSF的三光子吸收系数分别为γDCZF=678×10- 20 cm3/W2和γBMOSF=592×10-20 cm3/W2. 同时, 两种新材料还表现出明显的三光子吸收光限幅效应,当入射光强分别为8和6GW/cm2时,非线性透过率分别达到30%和45%. 关键词: 芴类衍生物 三光子吸收 光限幅 非线性透过率  相似文献   

7.
Amitriptyline.HCl (AMI) and clomipramine.HCl (CMI) react with eosin Y (EY) in pH 3.8 NaAc-AcH buffer solution to form ion association complex which results in quenching of fluorescence of EY and appearance of a new resonance Rayleigh scattering (RSS) spectrum at 620 nm. The spectral characteristics of absorption, fluorescence and RSS spectra have been investigated. The factors influencing the reaction were studied and optimum conditions for the reaction have been determined. Based on fluorescence quenching, a simple and sensitive spectrofluorimetric method for determination of AMI and CMI has been developed. The fluorescence quenching intensity was measured at 550 nm using an excitation wavelength of 310 nm. The calibration graph was found to be rectilinear in the range 0.08–2.0 μg?mL?1 with detection limit of 0.017 μg?mL?1 for AMI and 0.06–2.0 μg?mL?1 with detection limit of 0.015 μg?mL?1 for CMI. The method can be satisfactorily applied to the determination of AMI and CMI in tablets without interference from commonly occurring exicipients. The recovery and RSD values obtained indicate good accuracy and precision of the method. The mechanism of the reaction and fluorescence quenching has also been discussed.  相似文献   

8.
We experimentally investigate the spectral extent and spectral profile of the supercontinuum (SC) generated in transparent solids: barium fluoride, calcium fluoride, and fused silica upon irradiation by intense femtosecond-long pulses of 800, 1,380, and 2,200 nm light. These wavelengths correspond to the normal and anomalous group velocity dispersion (GVD) regimes in fused silica calcium fluoride and barium fluoride. We observe an isolated (anti-Stokes) wing on the blue side most prominently in fused silica but also in CaF2. The SC conversion efficiency is measured for the long wavelengths used in our experiments. We also present results on filamentation in BaF2 in the anomalous GVD regime, including visualization of focusing–refocusing events within the crystal; the size of a single filament is also determined. The 15-photon absorption cross section in BaF2 is deduced to be 6.5 × 10?190 cm30 W?15 s?1.  相似文献   

9.
利用吸收光谱和皮秒时间分辨荧光研究PAN-C60星状共聚物的电荷转移过程。PAN-C60共聚物的吸收和荧光光谱结果显示共聚物中存在着电荷转移过程。时间分辨荧光结果表明PAN的荧光衰减遵循双指数衰减规律(一快过程160ps和一慢过程1500ps),快衰减过程主要来源于聚合物中主链间相互作用产生的空间间接极化子对的影响,慢变过程主要来源于单重态激子的辐射跃迁弛豫。在共聚物中,C60分子的存在除导致PAN激发态寿命缩短外,还影响聚合物链间的相互作用,C60分子对PAN荧光猝 灭作用主要通过慢变过程影响的,而对PAN的空间极化子对的影响主要与其快衰减过程有关。  相似文献   

10.
Eight novel chlorinated fluorescent proteins-labeling probes with a linker and reactive group were prepared in 7 steps by the reaction of chlorinated resorcinols with 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. Structures of target compounds and intermediates were determined via IR, MS, 1H NMR and element analysis. The spectral properties of the chlorinated fluoresceins were studied. These fluorescent probes showed absorbance peaks at 508–536 nm and fluorescence peaks at 524–550 nm. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. The probes were used for fluorescence imaging of cells in order to investigate whether they can conjugate to cells. The fluorescence imaging of living cells showed that they were localized in cell nucleus. However, they were localized in cytosol of chemically fixed cells. These probes will be useful reagents for the preparation of stable fluorescent conjugates.  相似文献   

11.
The riboflavin dye 2,3,4,5-tetra-O-acetyl-1-[3-(6-bromohexyl)-7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl]-1-deoxypentitol and its pyridinium salt were synthesized, and studied by absorption and fluorescence spectroscopy in solutions and on thin film states. The first absorption band of riboflavin-pyridinium salt derivative is red-shifted by 10 nm compared to neutral one on film. Cationic riboflavin derivative shows significant wavelength changes on its fluorescence emission spectrum in the excited state depending on the solvent polarity and the electronic environment. The fluorescence quantum yields of cationic riboflavin gave much higher values as compared to that of its neutral form. The fluorescence lifetimes were found to be in the range of 5.5–6.6 ns with mono ? exponential behavior. These dyes possess low-lying HOMO energy levels which are suitable to be able to inject holes to donor polymers so that they can be used as acceptor component in the active layer of bulk heterojunction solar cells (BHJ-SCs). Photovoltaic responses are reported for P3HT:riboflavin active layer wherein the synthesized dyes are used as acceptor component. Also, neutral riboflavin shows greater electron mobility value of 1.3 × 10?3 cm2/V?s compared to its cationic derivative.  相似文献   

12.
In this contribution, novel luminescent gold nanoclusters were synthesized by utilizing bovine serum albumin as templates with a simple, rapid, and one-pot procedure. The as-prepared gold nanoclusters were highly dispersed in aqueous solution and emitted an intense red fluorescence under UV light (365?nm). They exhibited strong fluorescence and the maximum excitation and emission wavelengths were 480 and 613.5?nm. In addition, the bovine serum albumin-stabilized gold nanoclusters were successfully utilized as novel fluorescent probes for the detection of quercetin for the first time. It was found that the addition of quercetin induced the strong fluorescence intensity of the gold nanoclusters to decrease. The decrease in fluorescence intensity of the gold nanoclusters caused by quercetin allowed the sensitive detection of quercetin in the range of 8.9?×?10?8?C1.8?×?10?4?mol?L?1. The detection limit for quercetin is 1.8?×?10?8?mol?L?1 at a signal-to-noise ratio of 3. The present sensor for quercetin detection possessed a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results.  相似文献   

13.
This article reports the optical properties such as absorption profile, molar absorptivity, fluorescence profile and photo-physical parameters such as dipole moment, oscillator strength, fluorescence quantum yields, fluorescence lifetimes, laser performance and finally photostability of 2,5-Bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT),1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOB), 5-diphenyel-oxazole (PPO) laser dyes in different restricted hosts. (BBOT), (POPOB) and (PPO) are embedded in transparent silica-based nanoporous sol-gel glass and copolymer matrix of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). The absorption and fluorescence properties of these laser dyes in sol-gel glass matrices are compared with their respective properties in copolymer host. In case of sol-gel matrix, all dyes had higher quantum yields as well as lasing wavelength maxima. The laser performances as well as the photostability of these laser dyes in sol-gel glass displayed senior behavior compared with (MMA/ HEMA) copolymer samples upon using nitrogen laser (337.1 nm) as pumping energy.  相似文献   

14.
A novel fluorescence sensor has been developed and applied for the determination of carbon dioxide released from the biodegradation of polymer materials and for the evaluation of the biodegradability of polymers. The proposed analytical method is based on the extraordinarily quenching effect of carbonate on fluorescence signal of N,N-diphenylthiourea system. Under the optimized experimental conditions, the fluorescence quenching system performed satisfactorily in a linear detection concentration ranging from 2.00 × 10?4 to 9.00 × 10?3 mol L?1 of carbonate. The detection limit is 8.33 × 10?5 mol L?1 for carbonate. This proposed fluorescence system for the selective sensing of carbonate has been successfully applied to determine the biodegradability of polybutylene succinate and related polymers under controlled composting environment with devices assembled in our laboratory. The results exhibited that the biodegradation rate and final biodegradation percentage of biodegradable thermoplastic poly(ester urethane) elastomers, which embodies the block copolymer of poly(butylene succinate) with poly(diethylene glycol succinate), were correlated to the amount of poly(diethylene glycol succinate). In addition, the maximum biodegradation percentage of the testing polymers has reached 45.01%. This research demonstrates the development of chemosensors for rapid, selective, and sensitive detection of carbon dioxide is important and significant for both environmental and biological science.  相似文献   

15.
Fundamental mode-locking is achieved in a 1.036 GHz cavity using a semiconductor quantum dot saturable absorber mirror with a fast relaxation time component of down to 550 fs. The dispersive cavity delivers 1.7 ps wide pulses with spectra supporting sub-picosecond pulse durations and an M² of 1.3. An average output power of up to 339 mW at wavelengths around 1,032 nm is achieved and the saturable absorber’s damage threshold is identified as a limitation for further power scaling.  相似文献   

16.
The sensitization of the excited triplet state of a novel symmetrical Bis(dialkylamino)phenoxazinium salt was developed in the presence of Hg2+. This effect was used to determine the concentration of Hg2+ in different water samples. The phenoxazinium salt sensor was characterized by different spectroscopic tools such as: UV, FTIR, NMR and fluorescence spectra. The sensor has an emission band at 347 nm in DMSO. Hg2+ in DMSO at pH 5.6 can remarkably quench the fluorescence intensity of the sensor at 347 nm and a new band was appeared at 436 nm due to the strong complex formation between Hg2+ and sensor. The quenching of the band intensity at 347 and the enhancement of the intensity of the new band at 436 were used to determine the Hg2+ in different waste water samples. The dynamic range found for the determination of Hg2+ concentration is 8.7?×?10-10 – 1.4?×?10-6 mol L?1 with a detection limit of 5.8?×?10?10 mol L?1 and quantification detection limit of 1.8?×?10-9 mol L-1.  相似文献   

17.
UV-VIS absorption and fluorescence spectroscopic properties of six related polyaromatic 2-pyridones have been studied. Excitation of the lowest and rather weak and structure-less transition [ε max (430 nm)?≈?3,000 mol?1dm3cm?1] gives rise to a broad fluorescence band in the visible region, for these compounds. These S 0 ? S 1 transitions are compatible with symmetrically forbidden transitions, promoted by intensity borrowing, as is revealed by fluorescence depolarisation data. With one exception, all compounds exhibit strong fluorescence, with quantum yields in glycerol varying between 40% and 70%. The corresponding fluorescence lifetimes range from 11 ns to 17 ns, while the radiative lifetimes are very similar (≈26 ns), for all compounds. Interestingly and rarely observed, the calculated radiative lifetimes for the weak absorption band are significantly longer, i.e. between 37 and 40 ns.  相似文献   

18.
In the present paper, anticipated performance characteristics of various InP-based GaInNAs quantum-well (QW) active regions are determined with the aid of our comprehensive computer model for various sets of parameters (temperature, carrier concentration, QW thickness). It is evident from this analysis that the compressively strained InP-based Ga0.12In0.88N0.02As0.98/Ga0.275In0.725As0.6P0.4 QW structure may offer expected lasing emission. Its maximal optical gain of over 2150 cm?1 has been determined at room temperature for the wavelength of about 2815 nm for the QW thickness of 10 nm and the carrier concentration of 5×1018 cm?3. Therefore, the above InP-based QW structure may be successfully applied in compact semiconductor laser sources of the desired radiation of wavelengths longer at room temperature than even 2800 nm. Similar GaAs-based devices emit radiation of distinctly shorter wavelengths, whereas GaSb-based ones avail themselves of more expensive substrates as well as exhibit lower thermal conductivities and worse carrier confinements.  相似文献   

19.
We propose an optical fiber which has very low dispersion loss (typically ~ 6.7 ps2/km at 1,550 nm) that can be achieved by doping Ag nanoparticle into the core glass. At low absorption loss approximation, dispersion free propagation can be achieved up to 64 km for a 20 ps pulse. Enhanced third order nonlinearity due to the presence of Ag nanoparticle (typically ~ 3.82 × 10?20 W/m2) compensates for long length dispersion broadening that is not possible in conventional fused silica step index fiber.  相似文献   

20.
Study on the Interaction between Florasulam and Bovine Serum Albumin   总被引:1,自引:0,他引:1  
In this paper, the interaction between florasulam (FU, 2′,6′,8-trifluoro-5-methoxy [Kragh-Hansen U, Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33(1):17–53 1981; Carter DC and Ho JX, Structure of serum albumin. Adv Protein Chem 45:153–203 1994; He XM, and Carter DC, Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215 1992] triazolo [1,5-c]pyrimidine-2-sulfonanilide) and bovine serum albumin (BSA) was investigated by fluorescence, ultraviolet absorption (UV) and Far-UV circular dichroism (CD) spectrometries. A strong fluorescence quenching was observed and the quenching mechanism was considered as static quenching. The binding constant of FU with BSA at 299 and 309 K were obtained as 1.5?×?104 and 7.1?×?103 l mol?1, respectively. There was one binding site between FU and BSA. The thermodynamic parameters enthalpy change (ΔH) and entropy change (ΔS) were calculated as ?57.89 kJ mol?1 and ?113.6 J mol?1 K?1, respectively, which indicated that the acting force between FU and BSA was mainly hydrogen bond and Van der Waals force. According to the Förster non-radiation energy transfer theory, the average binding distance between donor (BSA) and acceptor (FU) was obtained (r?=?1.59 nm). The investigations of the UV/Vis and CD spectra of the system showed that the conformation of BSA was changed in presence of FU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号