首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerium-doped calcium sulphide nanoparticles were synthesized using the solid state diffusion method. The formed nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed a cubic CaS phase with an average grain size of 53 nm of the formed samples. The TEM image showed non-agglomerated particles with an average size of 60 nm, which is in close agreement with the XRD result. The PL-emission spectrum showed peaks at 506 and 565 nm due to the transition from the excited state to the ground state of Ce3+. The effect of etching has been studied on the luminescent properties of CaS:Ce phosphors. With an increase in the etching time there is decrease in the size of the particles, as a result of which the PL spectrum showed a slight blue shift. The UV-visible absorption spectrum also showed a blue shift with an increase in etching time, which is in agreement with the nanosize effect.  相似文献   

2.
陈中钧  田东斌 《中国物理 B》2010,19(11):117105-117105
This paper investigates the electronic and optical properties for pure and Ce 3+-doped CaS crystals by using the first-principles total energy calculations.The results show that CaS:Ce has a direct band gap of 2.16 eV,and the top of the valence band is determined by S 3p states and the bottom of the conduction band is determined by Ce 4f states,respectively.Our results validate that the yellow emission from CaS:Ce is produced by doped cerium and the green emission quenches at 12.5% cerium concentration.The Ce-S bond shows more covalent character than the Ca-S bond.  相似文献   

3.
CaS:Ce, Sm nanophosphors were synthesized via solid state diffusion method. X-Ray diffraction confirmed the cubic crystalline phase of CaS:Ce, Sm nanoparticles. The particle size calculated using Debye-Scherrer formula was found to be 52 nm. The morphological investigations of the nanoparticles were made using TEM and found to have nearly spherical morphology with diameter 45-50 nm, which is in close agreement with the XRD result. The PL emission characteristics of CaS:Ce, Sm as a function of cerium and samarium concentrations have been studied and CaS:Ce0.6Sm0.4 system has maximum emission intensity, hence it was opted for further studies. The CaS:Ce0.6Sm0.4 system showed independent emission of Sm and Ce when excited at 330 and 450 nm, respectively. To study the energy transfer between cerium and samarium, the CaS:Ce0.6Sm0.4 was excited at wavelengths other than the excitation wavelengths of Ce (450 nm) and Sm (330 nm). The existence of Ce emission (at an excitation of 390 nm) even in the absence of Ce excitation band and Sm emission at an excitation of 405 nm, which is the excitation band of Ce, indicates the energy transfer at these two wavelengths. Thermoluminescence characteristics of 60Co irradiated CaS:Ce0.6Sm0.4 have been investigated for different doses of 0.14-125 Gy. All the glow curves show a single peak at 475 K. With increasing dose, the intensity of this peak increases and a shoulder is formed on the lower temperature side at 415 K at 21 Gy of exposure. CaS:Ce0.6Sm0.4 shows almost linear dose dependence up to 125 Gy.  相似文献   

4.
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.  相似文献   

5.
Different samples of calcium sulphide (CaS):CaS(Sm) and CaS(Sm,Ce) phosphors have been prepared. To study the phosphorescence decay systematically, the samples were excited to a saturation using 259 nm line of xenon lamp and phosphorescence emission was monitored for a wavelength 569 nm of samarium. The trap depth has been evaluated by analyzing the decay curves. The observed decay could be explained satisfactorily by assuming a superposition scheme. The thermoluminescence properties of the doped CaS phosphors are also investigated in detail by computerized deconvolution technique of the glow curves obtained by UV irradiation.  相似文献   

6.
采用硫化助熔剂法制备了SrS:Eu,Mn和CaS:Eu,Mn荧光粉。与CaS相比,SrS基质材料的光激励发光峰位于610 nm,比前者更接近视觉敏感区。比较了不同基质材料的存储光和量,SrS基质材料存储能力强于CaS。同时Mn2+掺杂增大了碱土金属硫化物被存储的光子数量,有利于提高材料的存储性能。  相似文献   

7.
Nano-sized cerium-doped yttrium aluminum garnet (YAG:Ce) phosphors were synthesized via a simple sol-gel process using metal nitrate precursors. The prepared phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy, respectively. Pure cubic garnet phase was formed at temperatures ∼900 οC. The particle sizes of as-prepared powders were mostly in the range of 17-27 nm. The crystalline YAG:Ce showed broad emission peaks in the range of 400-700 nm and maximum intensities at 500 and 520 nm. It is found also that the emission intensity decreased with increasing Ce doping concentration from 0.1 to 1.5 at%. With increasing Ce doping concentration, the PL intensity was shifted towards shorter wavelengths.  相似文献   

8.
掺稀土Ce的金刚石薄膜光致发光研究   总被引:2,自引:1,他引:1  
制备了不同注入剂量的Ce^3 掺杂金刚石薄膜,研究了其光致发光特性,得到了发光主峰位于蓝紫区(421nm和462nm处)的光发射。实验中发现随着Ce^3 注入剂量的增加,器件光致发光的强度也逐渐增加,这些实验现象作了解释。  相似文献   

9.
Undoped and different concentration Nd3+ doped SrNb2O6 powders with columbite structure were synthesized by molten salt process using a mixture of strontium nitrate and niobium (V) oxide and NaCl-KCl salt mixture as a flux under relatively low calcining temperature. X-ray diffraction analysis results indicated that SrNb2O6 phases found to be orthorhombic columbite single phase for undoped, 0.5 and 3 mol% Nd3+ doping concentrations. Phase composition of the powders was examined by SEM-EDS analyses. Radioluminescence properties of Nd3+ doped samples from UV to near-IR spectral region were studied. The emissions increased with the doping concentration of up to 3 mol%, and then decreased due to concentration quenching effect. There is a sharp emission peak around 880 nm associated with 4F5/2 → 4I9/2 transition in the Nd3+ ion between 300 and 1100 nm. The broad emission band intensity was observed from 400 to 650 nm where the peak intensities increased by increasing Nd3+ doping concentration. All the measurements were taken under the room temperature.  相似文献   

10.
This study has been carried out on the optical properties of polyvinyl-pyrrolidone (PVP), the energy transition process in nanocomposite of PVP capped ZnS:Mn nanocrystalline and the influence of the PVP concentration on the optical properties of the PVP capped ZnS:Mn nanocrystalline thin films synthesized by the wet chemical method. The microstructures of the samples were investigated by X-ray diffraction, the atomic absorption spectroscopy, and transmission electron microscopy. The results showed that the prepared samples belonged to the sphalerite structure with the average particle size of about 2–3 nm. The optical properties of samples are studied by measuring absorption, photoluminescence (PL) spectra and time-resolved PL spectra in the wavelength range from 200 to 700 nm at 300 K. From data of the absorption spectra, the absorption edge of PVP polymer was found about of 230 nm. The absorption edge of PVP capped ZnS:Mn nanoparticles shifted from 322 to 305 nm when the PVP concentration increases. The luminescence spectra of PVP showed a blue emission with peak maximum at 394 nm. The luminescence spectra of ZnS:Mn–PVP exhibits a blue emission with peak maximum at 437 nm and an orange–yellow emission of ion Mn2+ with peak maximum at 600 nm. While the PVP coating did not affect the microstructure of ZnS:Mn nanomaterial, the PL spectra of the PVP capped ZnS:Mn samples were found to be affected strongly by the PVP concentration.  相似文献   

11.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

12.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

13.
Cathodoluminescence (CL), photoluminescence (PL), thermoluminescence (TL) spectra, and decay after laser beam excitation of cerium-activated CaS phosphors doped with Fe, Co, Ni or Cd have been investigated. These studies shed some light on the nature of luminescence centres and the association of various groups of traps with the dopants. Effect of concentiation variation of these four elements on emission and decay characteristics of CaS:Ce phosphor has been discussed. In contrast with the earlier publication [W. Lehmann and F. M. Ryan, J. Electrochem. Soc. 119, 275 (1972)] we have found that Ni is an effective killer, Cd ineffective and Co has no clearly observable effect. Fe has also been found to be an effective killer for CaS:Ce phosphors. Ni and Fe appear to be more effective quenchers for shorter wavelength emission band characteristic of Ce in CaS.  相似文献   

14.
The irradiation effect on bismuth doped CaS nanocrystalline phosphors and their possible applications to solid state dosimetry have been studied. The wet chemical co-precipitation method has been used for preparation of nanocrystallites. In UV exposed CaS nanocrystallites, the thermoluminescence glow curve consists of two peaks at 439 and 561 K. The effect of different concentrations, dose dependence, fading and reusability in CaS:Bi nanocrystallites have been investigated. The high temperature peak (dosimetric peak) intensity is nearly linear in a wide range of UV exposure. A blue shift has been observed in photoluminescence spectra, which may be attributed to quantum size effect.  相似文献   

15.
本文通过发射光谱、激发光谱和发光的衰减特性,研究了三价稀土离子Ce3+和Tb3+在CaS基质中的相互作用。实验结果表明,在CaS中Tb3+敏化了Ce3+的发光,监测Ce3+的发光(505nm),在激发光谱中出现Tb3+中心特征辐射的激发带。而且在CaS:Ce、Tb中,Ce3+中心的发光衰减变慢,衰减后期的慢成份正是反映了能量施主Tb3+的衰减特性,证明在CaS:Ce、Tb中存在着Tb3+到Ce3+的能量传递。  相似文献   

16.
Green luminescence and degradation of Ce3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce3+ nanocrystalline phosphors during electron bombardment in an O2 environment. The effect of different oxygen pressures ranging from 1 × 10−8 to 1 × 10−6 Torr on the CL intensity was also investigated. A CaSO4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 × 10−6 Torr oxygen pressure after an electron dose of 50 C/cm2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.  相似文献   

17.
YAG:Ce3+的合成与光谱性能研究   总被引:14,自引:0,他引:14  
采用共沉淀法合成了YAGCe3+(Y3Al5O12Ce3+)光致发光荧光粉并测定了其激发光谱、发射光谱及粒度对发光强度的影响.结果表明,YAGCe3+荧光粉激发光谱为双峰结构,两主峰分别位于近紫外和可见光区,发射光谱为宽峰,峰值为550nm.X射线衍射(XRD)分析表明该发光粉为纯YAG晶相.  相似文献   

18.
当前商用白光LED器件中YAG∶Ce3+荧光粉的单一黄光发射,导致其缺乏红光限制了器件的应用和发展,在YAG∶Ce3+中掺杂其他离子是解决该问题的有效途径之一。采用溶胶凝胶法制备了系列单掺Ce3+,Ca2+和Gd3+的YAG纳米荧光粉。研究了离子掺杂量对荧光粉的物相、结构、形貌、粒度、发光性能及量子效率的影响,分析了发光机理。结果表明:制备的纳米荧光粉粒径为100~200 nm。Ce3+和Gd3+掺杂时均得到YAG纯相,但晶体结构膨胀,晶面衍射峰向小角度方向移动。样品结晶度随Ce3+和Ca2+(<0.025 mol)掺杂量增大变化不明显,随Gd3+则呈现逐步降低趋势。三种离子掺杂量增大时,Ce3+的晶格能上升,5d能级晶体场劈裂加剧;Gd系列荧光粉激发和发射光谱随掺杂量的增大发生红移,Ce和Ca系列则因掺杂量小表现不明显。荧光粉发光强度随Ce3+掺杂量上升先增大后减小,最佳掺杂量为0.06 mol;随Gd3+掺杂量增加逐步降低;随Ca2+掺杂量增大则急剧下降,0.03 mol掺杂量时荧光强度几乎为零,YAG晶体结构破坏,生成YAM和YAP相。研究的开展,将对后续纳米YAG荧光粉及其相关功能材料的进一步开发使用提供一定的理论依据和实践参考。  相似文献   

19.
In this study, photoluminescence (PL) and photostimulated luminescence (PSL) properties in KBr:Eu2+, Tl+ powder phosphors are reported. PL emission spectra of these Tl+ co-doped KBr:Eu2+ phosphors show four overlapping bands around 310, 325, 360 and 375 nm in addition to the characteristic of Eu2+ ions at 420 nm. These additional short wavelength bands were attributed to centres involving Tl+ ions. The decrease in PSL intensity of γ-irradiated KBr:Eu2+, Tl+ powder phosphors with Tl+ concentration and the absence of thallium emission bands in PSL were attributed to the efficient electron trapping by Tl+ ions during irradiation.  相似文献   

20.
Direct synthesis of ZnS nanocrystallites doped with Ti3+ or Ti4+ by precipitation has led to novel photoluminescence properties. Detailed X-ray diffraction (XRD), fluorescence spectrophotometry, UV–vis spectrophotometry and X-ray photoelectron spectroscopy (XPS) analysis reveal the crystal lattice structure, average size, emission spectra, absorption spectra and composition. The average crystallite size doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2.6±0.2 nm. The nanoparticles can be doped with Ti3+ and Ti4+ during the synthesis without the X-ray diffraction pattern being altered. The strong and stable visible-light emission has been observed from ZnS nanocrystallites doped with Ti3+ (its maximum fluorescence intensity is about twice that of undoped ZnS nanoparticles). However, the fluorescence intensity of the ZnS nanocrystallites doped with Ti4+ is almost the same as that of the undoped ZnS nanoparticles. The emission peak of the undoped sample is at 440–450 nm. The emission spectrum of the doped sample consists of two emission peaks, one at 420–430 nm and the other at 510 nm. Received: 27 April 2001 / Accepted: 16 August 2001 / Published online: 17 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号