首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence spectroscopy is frequently used to analyze the concentration of fluorescent materials in solution. However, in conventional fluorescence spectroscopy, the response between the fluorescence intensity and fluorophore concentration is nonlinear at high concentrations due to uncompensated inner-filter effects (IFE). Many methods to resolve this problem have been developed in recent decades. This review introduces the methods used to correct the IFE, including direct correction and parameter correction. Relevant detection parameters, including the materials, matrices, detection limits, detection instruments and relative standard deviations, are tabulated. The advantages and limitations of these correction techniques are also discussed. Finally, the methods used to correct for the IFE are summarized, and future research directions are discussed.  相似文献   

2.
3‐(4‐Nitrophenylethenyl‐E)‐NH‐indole ( 1 ), 3‐(4‐nitrophenyl ethenyl‐E)‐N‐acetylindole ( 2 ), and 3‐(4‐nitrophenylethenyl‐E)‐N‐benzenesulfonylindole ( 3 ) are relatively less fluorescent in organic solvents, with fluorescence quantum yield (Φf) in the range of 0.002 to 0.066 depending on the solvent polarity. However, in bovine serum albumin (BSA)‐phosphate buffer, the fluorescence of these compounds gets drastically enhanced with Φf in the range of 0.21 to 0.67, depending on the substituent on the indolic nitrogen atom. Additionally, linear increase in the fluorescence intensity of 2 and 3 occurs on increasing the BSA concentration. These fluorescence properties together with the neutral, hydrophobic nature of these compounds make these fluorophores good fluorescence probe for studying the micropolarity of proteins like BSA and in general the ligand–protein interactions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Symmetric‐type carbazole derivatives show great potential for application in two‐photon absorption (TPA) materials and organic light‐emitting diodes. The absorption spectra and fluorescence emission spectra of three different N‐alkyl symmetric‐type carbazole derivatives were investigated. The density functional theory (DFT) time‐dependent‐DFT//Becke, three‐parameter, Lee–Yang–Parr/6‐31 G* method has been used to theoretically study one‐photon absorption properties. The computational results are in good agreement with the available experimental values. The two‐photon excited fluorescence of the compounds was surveyed by 120 fs pulse at 790 nm Ti: sapphire laser operating at 1 kHz repetition rate. Two‐photon excited fluorescence was obtained in the range of 380–600 nm, and TPA cross‐sections were calculated. The TPA properties of the series of compounds were investigated by the ZINDO/single and double electronic excitation configuration interaction method. The influence of the chemical structure of the compounds on two‐photon optical properties was discussed. The results show how the different changes in one‐photon absorption and TPA properties on the basis of lengthening the conjugated bridge and the different carbazole N‐alkyl substituents are attributed to the transition dipole moment in the excited process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The spatial and temporal coherence of the fluorescence emission controlled by a quasi‐two‐dimensional hybrid photonic–plasmonic crystal structure covered with a thin fluorescent‐molecular‐doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi‐two‐dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm2, which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double‐slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical‐mode‐modified emission.  相似文献   

5.
Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics. Yet, understanding and engineering the properties of fluorescent defects in nanodiamonds remain challenging. The most comprehensive study to date is presented, of the optical and physical properties of five different nanodiamond samples, in which fluorescent nitrogen‐vacancy (NV) centers are created using different fabrication techniques. The FNDs' fluorescence spectra, lifetime, and spin relaxation time (T1) are investigated via single‐particle confocal fluorescence microscopy and in ensemble measurements in solution (T1 excepted). Particle sizes and shapes are determined using scanning electron microscopy and correlated with the optical results. Statistical tests are used to explore correlations between the properties of individual particles and also analyze average results to directly compare different fabrication techniques. Spectral unmixing is used to quantify the relative NV charge‐state (NV? and NV0) contributions to the overall fluorescence. A strong variation is found and quantified in the properties of individual particles within all analyzed samples and significant differences between the different particle types. This study is an important contribution toward understanding the properties of NV centers in nanodiamonds. It motivates new approaches to the improved engineering of NV‐containing nanodiamonds for future applications.  相似文献   

6.
Two‐photon fluorescent probe materials are significant for achieving observation of living phenomena in entire organs and tissues. To explore new materials with high fluorescence and large two‐photon absorption (TPA) cross section, a series of 2,3,5‐trisubstituted pyrazine derivatives were designed. Their equilibrium geometries, one‐photon absorption, TPA, and luminescence properties have been studied by using density functional theory (DFT), time‐dependent DFT, and Zerner's intermediate neglect of differential overlap program. The results show that the introduction of styrene groups to 2,3,5‐trisubstituted pyrazine derivatives can efficiently increase the conjugated effect and enhance the TPA activity. Moreover, the luminescence properties of 2,3,5‐trisubstituted pyrazine derivatives were compared, and the effect of three substituents on the fluorescence of trisubstituted pyrazine derivatives was analyzed by means of different contribution of the basis functions localized on pyrazine fragment into the highest occupied molecular orbital and lowest unoccupied molecular orbital. The oscillator strengths in the excited state (?em) for the pyrazine derivatives substituted by styryl are larger than that of other derivatives with acetylamino and indole groups substituted at 2‐site and 5‐site of the pyrazine core, and the ?em of 3‐indolyl pyrazine derivatives is larger than that of 3‐styrene pyrazine derivatives. It suggests that the styrene group has a great influence on the luminescence property. In addition, the indole group substituted at 3‐site of the pyrazine derivatives can also promote the fluorescence property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Phenanthrimidazoles as hole transport materials have been synthesized, characterized, and applied as nondoping emitters in organic light emitting devices. The synthesized molecules possess high fluorescent quantum yield and thermal properties and display film forming abilities. The highest occupied molecular orbital (HOMO) energies of these materials are shallower than the reported tris(8‐hydroxyquinoline)aluminum (Alq3), which enables the hole transport ability of these phenanthrimidazoles. Taking advantage of the thermal stability and hole transporting ability, these compounds can be used as a functional layer between NPB [4,4‐bis(N‐(1‐naphthyl)‐N‐phenylamino)biphenyl] and Alq3 layers and show that these phenanthrimidazoles can be alternatively used as novel hole transport materials and to improve the device performances. Geometrical, optical, electrical, and electroluminescent properties of these molecules have been probed. Further, natural bond orbital, nonlinear optical materials (NLO), molecular electrostatic potential, and HOMO–lowest unoccupied molecular orbital (LMO) energy analysis have been made by density functional theory (DFT) method to support the experimental results. Hyperpolarizability analysis reveals that the synthesized phenanthrimidazoles possess NLO behavior. The chemical potential, hardness, and electrophilicity index of phenanthrimidazoles have also been computed by DFT method. Photoinduced electron transfer explains the enhancement of fluorescence by nanoparticulate ZnO, and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazoles on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to Zn(II) on the surface of nanocrystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
农药的广泛使用对环境产生了重要的影响,西维因作为一种重要的广谱高效杀虫剂在很多地表水中残留,了解和掌握西维因在环境中的光谱特性及检测方法具有重要意义。研究了西维因的激发-发射三维荧光光谱特性,通过改变甲醇-水二元混合溶剂中甲醇的体积比,探讨了不同体积比的甲醇-水混合溶剂对西维因三维荧光光谱的影响。研究结果表明,西维因的特征荧光光谱峰为单峰,西维因的激发波长和发射波长范围分别处于: 244~304和300~350 nm,最大激发/发射峰位置分别位于280和335 nm。随着甲醇-水二元混合溶剂中甲醇含量的增加,西维因的三维荧光光谱未出现明显位移,但是荧光光谱强度随甲醇含量的增加出现了非线性的变化,这主要与二元混合溶剂自身独特的性质有关。  相似文献   

10.
Gold quantum dots (AuQDs) are employed as photosensitizers in organic thin‐film solar cells (OSCs) to improve their photoelectric conversion properties. Three types of AuQDs with different fluorescence emission wavelengths are used: blue (B‐AuQDs), green (G‐AuQDs), and red (R‐AuQDs). AuQDs are loaded into the poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) thin‐film layer of OSCs. UV–vis spectra, atomic force microscope images, current density–voltage characteristics, and impedance spectra of the fabricated devices are measured for the three aforementioned types of AuQDs. All types of AuQDs improve the photoelectric conversion properties, and the G‐AuQD‐loaded OSCs exhibit the best improvement, exhibiting an efficiency increase of 10% compared with OSCs without the AuQDs. The fluorescence/photosensitization of the AuQDs plays an important role in the enhancement of the OSCs. Finite‐difference time‐domain simulations indicate increased electric field intensity due to a small degree of AuQDs aggregation.  相似文献   

11.
黄烷酮类化合物是天然药物的重要活性成分,也是有机合成的研究热点之一,但此类化合物的荧光性质尚缺乏研究。研究了黄烷酮及其6种羟基衍生物的荧光性质,发现黄烷酮(Flavanone,FV)、7-羟基黄烷酮(7-Hydroxyflavanone,7HF)和6-羟基黄烷酮(6-Hydroxyflavanone,6HF)的水溶液有荧光,而2’-羟基黄烷酮(2’-Hydroxyflavanone,2’HF)、4’-羟基黄烷酮(4’-Hydroxyflavanone,4’HF)、柚皮素(4’,5,7-三羟基黄烷酮,Naringenin)和乔松素(5,7-二羟基黄烷酮,Pinocembrin)的水溶液基本无荧光。在三维荧光图谱中,FV的荧光激发波长(λex)为235,265和340 nm,发射波长(λem)为386 nm;7HF的λex为230,276和315 nm,λem为391 nm;6HF的λex为260和356 nm,λem为482 nm。研究了pH对FV,7HF和6HF荧光的影响,从分子结构的角度讨论了pH对荧光产生影响的原因。研究了7HF和6HF在不同pH条件下的紫外吸收光谱,用pH-光度法测得7HF和6HF的羟基质子电离常数pKa分别为7.26±0.05和9.90±0.02。研究了溶剂(甲醇)对FV,7HF和6HF荧光光谱的影响,发现FV和7HF在甲醇溶液中的荧光比在水中减弱,而6HF在甲醇中的荧光显著增强。在有序介质(SDS,CTAB,β-CD)中,FV和7HF的荧光减弱,而6HF在β-CD或CTAB中的荧光增强。以硫酸奎宁或L-色氨酸为参比,测得FV和7HF水溶液的荧光量子产率分别为0.057和0.012;6HF在甲醇中和在β-CD浓度为1.62 mg·mL-1的水溶液中的荧光量子产率分别为0.064和0.012。  相似文献   

12.
Temperature measurement in biology and medical diagnostics is of great importance. Herein, a novel carbon nanodot (CND) based fluorescent nanothermometry device for spatially resolved temperature measurements is demonstrated. The fluorescence CNDs are prepared by a simple one‐pot solvothermal method using sucrose as carbon source. Resultant CNDs show stable green fluorescence at 520 nm with high quantum yield (≈6%). The fluorescence of resultant CNDs exhibits a reversible linear response to temperature in a wide range of 20–85 °C. Moreover, the temperature resolution better than 0.5 °C and high sensitive variation of ≈1.3% °C?1 are observed in a broad physiological temperature range of 20–40 °C. Therefore, the as‐prepared CNDs possess high water solubility, stable fluorescence, small size, and good biocompatibility, which make them promising candidate for thermometry and cell imaging in biological media.  相似文献   

13.
A pH fluorescent molecular switch, BOPIM‐dma, a boron 2‐(2′‐pyridyl) imidazole complex derivatives, was investigated in aqueous system. BOPIM‐dma shows weak or no fluorescence in conventional solvents due to twisted intramolecular charge transfer (TICT). Upon protonation of the dimethylamino groups in BOPIM‐dma, its fluorescence was turned on ascribed to the inhibition of TICT. Its emission can be switched ‘on’ or ‘off’ between pH 2.4 and 4.0, and it undergoes a reversible protonation–deprotonation reaction with a pKa of 3.12. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Metasurfaces, which consist of resonant metamaterial elements in the form of two‐dimensional thin planar structures, retain great capabilities in manipulating electromagnetic wave and potential applications in modifying interaction with fluorescent molecules. The metasurfaces with magnetic responses are favorable to weakening fluorescence quenching while less investigated in controlling fluorescence. In this paper, we demonstrate control over fluorescence emission by engineering the magnetic and electric modes in plasmonic metasurfaces consisting of 45‐nm‐thick gold split‐ring‐resonators (SRRs). The fluorescence emission exhibits an enhancement factor of ∼18 and is predominantly x‐polarized with assistance of the magnetic mode excited by oblique incidence with an x‐polarized electric field. The magnetic and electric modes excited by oblique incidence with a y‐polarized electric field contribute to the rotation of emission polarization with respect to the incident polarization. The results demonstrate manipulating the interaction of fluorescent emitters with different resonant modes of the SRR‐based metasurface at the nanoscale by the polarization of incident light, providing potential applications of metasurfaces in a wide variety of areas, including optical nanosources, fluorescence spectroscopy and compact biosensors.

  相似文献   


15.
In this letter we report further findings on the ability of an applied direct current to modulate Metal-Enhanced Fluorescence (MEF). Fluorophores in close-proximity to just-continuous silver films (JCS) show significantly enhanced fluorescence intensities. However, when a current is applied to the films, the enhanced fluorescence can be gated in a manner that depends on both the fluorophore concentration, the magnitude of the applied current and the extent of the protein mono to multi-layer surface coverage. Our results are consistent and indeed further support our previous hypothesis and model that fluorophore-metal near-field interactions can be influenced by an applied direct current.  相似文献   

16.
Many experimental designs, in which nucleic acid conformational changes are of interest, require reliable fluorescence labeling. The appropriate fluorescence probe should have suitable optical properties and, more importantly, should not interfere with the investigated processes. In order to avoid chemical modifications the fluorescence label needs to be associated with nucleic acid via weak non-covalent interactions. There are a number of fluorescent probes that change their fluorescent properties (i.e. their quantum yield and/or spectral characteristics) upon association with nucleic acid. Such probes are frequently used to detect, visualize and follow processes involving nucleic acid and its conformational changes. In order to obtain reliable data regarding macromolecule or aggregate topology a detailed knowledge of probe–nucleic acid interactions on the molecular level is needed. In this paper we show that the association of propidium iodide with DNA alters its conformation and that it selectively labels plasmid fragments and/or its subpopulations in a concentration-dependent meaner. Another dye, PicoGreen, exhibits better properties. It labels nucleic acid uniformly and without any concentration-dependent artifacts.  相似文献   

17.
A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low‐wavenumber‐resolution Raman imaging, Rayleigh scatter imaging and two‐photon fluorescence (TPE) spectral imaging, fast ‘amplitude‐only’ TPE‐fluorescence imaging and high‐spectral‐resolution Raman imaging. This multi‐dimensional fluorescence–Raman microscopy platform enables rapid imaging along the fluorescence emission and/or Rayleigh scatter dimensions. It is shown that optical contrast in these images can be used to select an area of interest prior to subsequent investigation with high spatially and spectrally resolved Raman imaging. This new microscopy platform combines the strengths of Raman ‘chemical’ imaging with light scattering microscopy and fluorescence microscopy and provides new modes of correlative light microscopy. Simultaneous acquisition of TPE hyperspectral fluorescence imaging and Raman imaging illustrates spatial relationships of fluorophores, water, lipid and protein in cells. The fluorescence–Raman microscope is demonstrated in an application to living human bone marrow stromal stem cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A novel fluorescent switchable chemosensor 1 , which is composed of an anthracene‐modified calix[4]crown in the 1,3‐alternate conformation, was calculated by density functional theory and time‐dependent density functional theory method. Geometries, molecular orbitals and binding thermal energies were evaluated at the restricted hybrid Becke's three‐parameter exchange functional using 6‐31 G(d) basis set and relativistic effective core potentials. The metal–ligand and cation–π interactions were investigated acting as two main types of driving force. Our calculations clearly show that solvent effects strongly influence cation selectivity, and K+ selectivity is recovered when even a few waters of hydration are considered. The calculations indicate that because of the photoinduced electron transfer effect, the addition of alkali metal ions have hardly any effect on the fluorescence of ligand 1 under neutral or basic conditions. Also, the high selectivity of ligand 1 for K+ and Rb+, under acidic conditions, the complexed metal ion can result in ammonium ion deprotonation, which leads to quenching of fluorescence of 1 ?H+. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The “far‐field” effect of metal nanoparticles (NPs), when chromophores localized nearby metal NPs (typically the distance >λ/10), is an important optical effect to enhance emission in photoluminescence. The far‐field effect originates mainly from the interaction between origin emission and mirror‐reflected emission, resulting in the increased irradiative rate of chromophores on the mirror‐type substrate. Here, the far‐field effect is used to improve emission efficiency of polymer light‐emitting diodes (PLEDs). A universal performance improvement is achieved for the full visible light (red, green, blue) PLEDs, utilizing gold (Au) NPs to modify the indium tin oxide (ITO) substrates; this is shown by experimental and theoretical simulation to mainly come from the far‐field effect. The optimized distance, between the NPs and chromophores with visible light emission ranging from 400 to 700 nm, is 80–120 nm. Thus the scope of the far‐field may overlap the light‐emitting profile very well to enhance the efficiency of optoelectronic devices. The 30–40% enhancement is obtained for different color‐emitting materials through distance optimization. The far‐field effect is demonstrated to enhance device performance for materials in the full‐visible spectral range, which extends the optoelectric applications of Au NPs.  相似文献   

20.
Transition metal dichalcogenides (TMDC) are important representatives in the emerging field of two‐dimensional materials. At present their combination with molecular films is discussed as it enables the realization of van der Waals bound organic/inorganic hybrids which are of interest in future device architectures. Here, we discuss the potential use of molybdenum disulfide (MoS2) as supporting substrate for the growth of well‐defined, crystalline organic adlayers. By this means, hybrid systems between the TMDC surface and organic compounds can be prepared, allowing for the profound investigation of mutual optical and electronic coupling mechanisms. As model system, we choose pentacene and perfluoropentacene as prototypical organic semiconductors and analyze their film formation on MoS2(001) surfaces. In both cases, we observe smooth, crystalline film growth in lying molecular configuration, hence enabling the preparation of well‐defined hybrid systems. By contrast, on defective MoS2 surfaces both materials adopt an upright molecular orientation and exhibit distinctly different film morphologies. This emphasizes the importance of highly ordered TMDC surfaces with low defect density for the fabrication of well‐defined hybrid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号