首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a dual-channel optical coherence tomography-Indocyanine Green dye (OCT-ICG) fluorescence system based on a previously reported ophthalmic OCT confocal imaging system. The confocal channel is tuned to the fluorescence wavelength range of the ICG, and light from the same optical source is used to generate the OCT image and to excite the ICG fluorescence. The system enables the clinician to visualize simultaneously en face OCT slices and corresponding ICG angiograms of the ocular fundus, displayed side by side. C-scan (constant depth) and B-scan (cross section) images are collected by a fast en face scan (T scan). The pixel-to-pixel correspondence between the OCT and angiography images allows the user to capture OCT B scans precisely at selected points on the ICG confocal images.  相似文献   

2.
增强现实技术在PDA上的应用   总被引:1,自引:0,他引:1  
陈靖  王涌天  林倞 《光学技术》2007,33(1):52-55
将增强现实技术与移动终端PDA相结合,在PDA上实现真实场景与虚拟增强信息的融合。系统采用基于Fourier_Mellin变换的2D图像匹配技术获取用户的视点参数,利用已标定的来自不同视点的图像作为参考图像库。采用客户/服务器构架减轻PDA的运算负担。研制的基于PDA移动终端的增强现实系统轻巧灵便,易于携带,通用性高,能够应用于户外场景。  相似文献   

3.
In the present cosmetic market, the skin image obtained from a hand-held camera is two-dimensional (2-D). Due to insufficient penetration, only the skin surface can be detected, and thus phenomena in the dermis cannot be observed. To take the place of the conventional 2D camera, a new hand-held imaging system is proposed for three-dimensional (3-D) skin imaging. Featuring non-invasiveness, optical coherence tomography (OCT) has become one of the popular medical imaging techniques. The dermal images shown in OCT-related reports were mainly single-colored because of the use of a monotonic light source. With three original-colored beams applied in OCT, a full-colored image can be derived for dermatology. The penetration depth of the system ranges from 0.43 to 0.78 mm, sufficient for imaging of main tissues in the dermis. Colorful and non-invasive perspectives of deep dermal structure help to advance skin science, dermatology and cosmetology.  相似文献   

4.
Here, we report on the feasibility of ICG fluorescence imaging to localize lesions in emergent minimally invasive surgery. A 49-year old female presented to the emergency department with a previously unknown malignant bowel obstruction. She was taken emergently to the operating room for a laparoscopic extended right hemicolectomy, based on tumor location from imaging. With intraoperative difficulty localizing the lesion, an on-table colonoscopy was performed. When the tumor was encountered, peritumoral ICG injections were performed, and the fluorescence lymphoscintigraphy was performed intraoperatively in an attempt to visualize the primary tumor laparoscopically. Intraoperative ICG Immunofluorescence allowed precise, real-time localization of the mass in the descending colon. This information changed the course of the operation, as a laparoscopic left hemicolectomy was then performed instead of the planned extended right hemicolectomy. The patient underwent an end-to-end anastomosis without the need for a defunctioning ileostomy. From this case, we demonstrate the use of ICG fluorescence imaging for tumor localization in the emergent setting is safe, feasible, and effective. This information gained from this technology enables real-time decision making, and can even change the operative plan in the emergent setting for the best patient outcomes. What does this paper add to the existing literature? This paper offers a novel application of an emerging technology- ICG fluorescence- that in this capacity allowed precise, real-time localization of a previously unknown mass in the emergent setting, and changed the course of the operation.  相似文献   

5.
We describe the in vivo fluorescence imaging method of novel threadlike tissues (Bonghan ducts) inside the lymphatic vessels of rats with fluorescent magnetic nanoparticles. This threadlike structure was not visible by a stereomicroscope because of its transparency. Its thickness was about 20 μm and floated in the lymphatic fluid without adhering to the lymphatic wall. Injecting the nanoparticles into the lymph nodes and applying static magnetic fields on the lymphatic vessels, we were able to obtain the in vivo fluorescence imaging of the threadlike structures under the fluorescence reflectance imaging system. The specimen was analyzed with a confocal laser scanning microscopes and transmission electron microscopes which exhibited the preferential absorption of the nanoparticles by the threadlike structures compared with the lymphatic walls. This preferential absorption was due to the loose extracellular matrix of the threadlike structures. These results show new applications of nanoparticles for in vivo imaging of hardly detectable tissues using fluorescence reflectance imaging and magnetophoretic control.  相似文献   

6.
Zhi Z  Jung Y  Wang RK 《Optics letters》2012,37(5):812-814
This Letter reports the use of an ultrahigh resolution optical microangiography (OMAG) system for simultaneous 3D imaging of microstructure and lymphatic and blood vessels without the use of an exogenous contrast agent. An automatic algorithm is developed to segment the lymphatic vessels from the microstructural images based on the fact that the lymph fluid is optically transparent. An OMAG system is developed that utilizes a broadband supercontinuum light source, providing an axial resolution of 2.3 μm and lateral resolution of 5.8 μm, capable of resolving the capillary vasculature and lymphatic vessels innervating microcirculatory tissue beds. Experimental demonstration is performed by showing detailed 3D lymphatic and blood vessel maps, coupled with morphology, within mouse ears in vivo.  相似文献   

7.
Subcutaneously administered Combidex® contrast agent produced characteristic magnetic susceptibility artifacts in gradient-echo (GE) images of rat brachial and axillary lymph nodes. These artifacts were useful in the rapid location and identification of normal sentinel lymph nodes. A linear dose response was observed with maximum artifact size in transverse images and was used noninvasively to study lymphatic drainage patterns.  相似文献   

8.
We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.  相似文献   

9.
Bao H  Allen J  Pattie R  Vance R  Gu M 《Optics letters》2008,33(12):1333-1335
A fast handheld two-photon fiber-optic fluorescence endoscope for three-dimensional (3D) in vivo cellular imaging is developed. The compact handheld probe of the two-photon endoscope can simply be placed into contact with the target tissue to reveal clear 3D surface and subsurface histological images without biopsy. The new system has, to the best of our knowledge, the largest field of view (FOV) of 475 microm x 475 microm and a 3D imaging volume larger than 475 microm x 475 microm x 250 microm. A real-time two-photon fluorescence image is displayed at 0.4 mm(2)/s. The lateral and axial resolutions of the two-photon fluorescence endoscope are better than 1 and 14.5 microm, respectively.  相似文献   

10.
Fluorescence spectroscopy and imaging have been widely used for in vivo cancer diagnosis and therapy monitoring in preclinical models, as well as clinical translation. Great attempts have been made to develop novel fluorescence techniques and improve on existing ones, which can now be used in conjunction with newly developed fluorescent probes for specific cancer imaging. In this review, a broad overview of fluorescence techniques is provided, including photodynamic diagnosis, laser confocal endomicroscopy and fluorescence lifetime imaging, coupled with endogenous and exogenous fluorophores. In particular, endogenous fluorophores, such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), are highlighted as they are linked to cellular metabolism in precancer growth. The use of near‐infrared dyes, such as indocynanine green (ICG), for imaging deep‐tissue regions is also reviewed. In addition, diagnostic algorithms used for tissue classification and cancer detection will be discussed. Lastly, emerging technologies in fluorescence diagnosis will also be included.  相似文献   

11.
Magnetic resonance (MR) imaging and isotope lymphography (lymphangioscintigraphy, LAS) was done in 32 patients with peripheral lymphedema (19 primary and 13 secondary). MRI characteristically showed diffuse dermal and subcutaneous edema, a nonedematous, occasionally hypertrophied skeletal muscle compartment, variability in regional lymph node size and appearance depending on the underlying clinical disorder, serpiginous "channels" or "lakes" consistent with dermal collateral lymphangiectasis and sequestered lymph, and increased subcutaneous fat. In contrast, LAS showed dermal diffusion ("backflow"), cross-over with retrograde tracer backflow (reflux), delayed tracer transport, and depending on the cause of lymphedema (i.e., primary or secondary), discrete or poorly defined lymph trunks (tracer "bands") and delayed or nonvisualization of regional lymph nodes. Although not a first-line clinical test, MR particularly in conjunction with LAS noninvasively provides accurate anatomical definition of the peripheral lymphatic system. In contradistinction to LAS, MR can visualize lymph trunks, nodes, and soft tissues proximal to sites of lymphatic obstruction. Together these imaging modalities may substitute for conventional oil contrast lymphography in the evaluation of the pathogenesis and evolution of most lymphologic disorders.  相似文献   

12.
双光子成像(Two-Photon Imaging)技术以其优越特性被广泛用于活细胞动态三维成像,但光功率极高的短脉冲光对焦平面荧光分子严重的光漂白极大地影响了双光子长时间成像的图像质量,针对双光子荧光漂白问题,本文提出一种优化光照的双光子(Optimized Lighting-Two Photon,OL-TP)成像技术。通过预扫描获取双光子图像分析高低阈值,以预设的高低阈值为标准优化一幅图像中不同区域的光照时长,利用扫描过程中记录的荧光信息和光照时间信息可以重建OL-TP图像,既保证信噪比又降低荧光漂白。重建的OL-TP图像与传统双光子图像基本一致,信噪比略有降低,但图像并未失真。对110 nm的荧光小球样本分别连续取30幅普通双光子和优化光照的双光子图像,到第30幅图时,重建后的优化光照双光子图像比普通双光子图像荧光漂白降低了28.86%。OL-TP通过优化光照时间大幅降低双光子成像的荧光漂白,使双光子荧光显微镜能够更好地对生物样本进行长时间观测。  相似文献   

13.
双光子荧光显微镜作为一种高分辨光学仪器,已经被广泛应用于生物样品的非侵入式三维光学成像中。相比共聚焦显微镜,双光子荧光显微镜拥有更深的探测深度。然而,即便如此,在对较厚的生物样品进行非侵入式光学三维成像时,样品的成像质量也往往会随着探测深度的增加而下降。在临床和生物学领域对研究母性遗传起重要作用的小鼠卵母细胞拥有较大的直径(80~100 μm),吸收和散射效应较为明显。本文研究小鼠卵母细胞染色体的三维双光子荧光图像随探测深度增加图像质量的衰减程度。通过对所得图像进行轴向衰减矫正,利用体积作为参数,将矫正前后小鼠卵母细胞内染色体三维双光子荧光图像进行对比。结果表明,由于吸收和散射效应,卵母细胞存在较严重的光学轴向衰减问题,因此,对用双光子荧光三维成像手段获得的小鼠卵母细胞图像进行衰减矫正是有必要的。这为进一步精确定量的研究卵母细胞内染色体的三维构像打下良好的基础。  相似文献   

14.
Oxygen and Indocyanine Green (ICG) loaded microparticles (OI-MPs) were fabricated by a gas-driven coaxial flow focusing (CFF) process for dual-mode imaging and sonodynamic therapy (SDT). The produced OI-MPs agent showed stable optical properties, superior imaging depth in near infrared (NIR) fluorescence imaging, and enhanced acoustic contrast after ultrasound mediation. We hypothesized that encapsulating ICG and oxygen in microparticles would enhance reactive oxygen species (ROS) production in SDT. This hypothesis was validated in a cell-free environment. We further hypothesized that ultrasound mediated fragmentation of the OI-MPs would induce cytotoxicity and apoptosis of cancer cells. This hypothesis was validated in SKOV3 ovarian cancer cells. Our research demonstrated that OI-MPs can be potentially used as a dual-mode theranostic agent for image guided SDT with enhanced efficacy. Further study is needed to delineate the mechanism of ROS-induced cell apoptosis and optimize the OI-MPs formulation for the maximal anti-cancer potency.  相似文献   

15.
The interactions of fluorophores with noble metal particles can modify their emission spectral properties, a relatively new phenomenon in fluorescence. We subsequently examined indocyanine green (ICG), which is widely used in medical testing and imaging, in close proximity to an electrically roughened platinum electrode. The emission intensity and lifetimes were decreased about 2-fold on the roughened surface as compared to a smooth Pt surface, and the photostability about the same. Platinum does not appear promising for metal enhanced fluorescence, at least for long wavelength fluorophores.  相似文献   

16.
We present a Kerr-gated microscope capable of collecting diffraction-limited 2D fluorescence images with sub-100 fs time resolution. The concept is based on the insertion of a solid-state optical Kerr gate into a wide-field microscope. In addition to the considerably improved temporal resolution, the wide-field design allows for simultaneous tracking of several objects and ultrafast fluorescence lifetime imaging of doped and heterogeneous surfaces. The ultrafast fluorescence dynamics of gold nanoparticles is presented as an example of the capabilities of the instrument.  相似文献   

17.
A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of the local tracer concentration, laser pulse energy, and the intensity distribution. An image doubling and filtering system is used for the simultaneous imaging of two wavelength ranges of toluene LIF onto the chip of a single camera upon excitation at 248 nm. The measurements were performed in a spark-ignition engine with homogeneous charge and yielded temperature images with a single-shot precision of approximately ±?6%.  相似文献   

18.
代秋声  漆玉金 《物理学报》2010,59(2):1357-1365
针孔单光子发射计算机断层(SPECT)成像的空间分辨率通常是根据Anger经验公式来进行估算,与实际测量存在较大偏差.本文通过对针孔成像的物理过程进行分析,提出了一个近似度更高的计算公式.利用精确的蒙特卡罗方法模拟针孔SPECT成像,采用OSEM(ordered subsets expectation maximization)算法对投影数据进行图像重建,并与模具实验进行比较,验证了理论公式的适用性.同时还讨论了体素尺寸、几何映射获取投影矩阵以及探测器尺寸与成像物体尺寸比值对断层图像空间分辨率的影响.实验结果显示,该理论公式所估算的空间分辨率比实验值平均偏小约10%,而Anger经验公式所估算的空间分辨率比实验值平均偏大约60%.因此,该理论公式能更好地估算针孔SPECT成像的空间分辨率,可为针孔SPECT系统的设计和使用提供有价值的参考.  相似文献   

19.
Ku G  Wang LV 《Optics letters》2005,30(5):507-509
Photoacoustic tomography (PAT) in a circular scanning configuration was developed to image deeply embedded optical heterogeneity in biological tissues. While the optical penetration was maximized with near-infrared laser pulses of 800-nm wavelength, the optical contrast was enhanced by Indocyanine Green (ICG) dye whose absorption peak matched the laser wavelength. This optimized PAT was able to image objects embedded at depths of as much as 5.2 cm, 6.2 times the 1/e optical penetration depth, in chicken breast muscle at a resolution of <780 microm and a sensitivity of <7 pmol of ICG in blood. The resolution was found to deteriorate slowly with increasing imaging depth. The effects of detection bandwidth on the quality of images acquired simultaneously by four different ultrasonic transducers are described.  相似文献   

20.
Forward-imaging instruments for optical coherence tomography   总被引:2,自引:0,他引:2  
We discuss the design and implementation of forward-imaging instruments for optical coherence tomography (OCT), which require the delivery, scanning, and collection of single-spatial-mode optical radiation. A hand-held surgical probe for use in open surgery can provide cross-sectional images of subsurface tissue before surgical incisions are made. A rigid laparoscope for minimally invasive surgical OCT imaging provides a simultaneous enface view of the area being imaged. OCT imaging is demonstrated on in vitro human specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号