首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population dynamics of the excited and ground states of the monofullerene-bis (pyropheophorbide a) complex (FP1) were studied in polar (DMF) and nonpolar (toluene) solvents using picosecond transient absorption techniques. A strong quenching of the fluorescence signal of FP1 was observed in both solvents, in comparison to the fluorescence of bis (pyropheophorbide a) (P2). This quenching is due to an intramolecular photoinduced electron transfer from the pyropheophorbide a (pyroPheo) moiety to the fullerene C60 monoadduct. In DMF the charge-separated (CS) state of FP1 has a lifetime of 0.32 ns and undergoes a direct transition to the ground state, resulting in a very low value of photosensitised singlet oxygen generation. In toluene, energy transfer from the first excited triplet state of pyroPheo, which has been populated via relaxation of the CS state, generates a considerable amount of singlet oxygen. The lifetime of the CS state in the nonpolar solvent was estimated to be 0.29 ns. It was also shown that in both DMF and toluene the first excited singlet state as well as the triplet state of the fullerene moiety in FP1 are not occupied. PACS 31.70.Dk; 31.70.Hq; 33.50.-j; 34.70.+e  相似文献   

2.
The photophysical properties of chlorin e6 (Ce6) in twelve different protic, aprotic and non-polar solvents were investigated using ultraviolet–visible and fluorescence spectroscopic methods. Solvatochromic effects were determined by the changes in quantum yield, Stokes shift, fluorescence half-life and excited state dipole moments of Ce6 in the different solvents. The absorption shifts observed in different solvents were further analyzed using the Kamlet-Abboud-Taft model and the nature of solute-solvent interactions between Ce6 and different protic and aprotic solvents was elucidated. The quantum yields were found highest in protic solvents (except water), followed by aprotic and non-polar solvents. Solvent polarity parameters showed a linear increasing trend with Stokes shift and fluorescence half-life, which indicated the presence of Ce6-solvent interaction. Using the Kamlet-Abboud-Taft model, a direct correlation between the solvent polarity parameters and absorption shift was observed, which substantiated the existence of Ce6-solvent interaction by hydrogen bond formation. The excited state dipole moments in specific protic and aprotic solvents were found to be higher than the ground state dipole moments, implying a more polar nature of Ce6 during excited state transition.  相似文献   

3.
Spectral characteristics of methyl 2-hydroxynicotinate (MEHNA) have been studied using absorption, fluorescence excitation and fluorescence spectroscopy, as well as, using single photon counting nanosecond spectrofluorimeter. MEHNA is present as enol in less polar solvents and keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to phototautomer, formed by excited state intramolecular proton transfer (ESIPT), whereas fluorescence is only observed from keto form in polar solvents. In aqueous and polar solvents monocation (MC) is formed by protonating the exo carbonyl oxygen atom in the ground state (S0) and in the first excited singlet state (S1), MC is obtained by protonating carbonyl oxygen atom of the ester. It is formed by ESIPT from exo carbonyl proton to carbonyl oxygen atom of the ester. Dication is formed by protonating both the oxygen atoms. Two kinds of monoanions formed by deprotonating phenolic proton or >N-H proton of keto suggest the presence of enol and keto in aqueous solution. In cyclohexane MC is formed by protonating carbonyl oxygen in both S0 and S1 states. The electronic structure calculations were performed on each species using semi-empirical quantum mechanical AM1 method and density functional theory B3LYP with 6-31G** basis set using Gaussian 98 program, along with potential energy mapping, to characterize the particular species.  相似文献   

4.
Fluorescence quenching of 3,7-diamino-2, 8-dimethyl-5-phenylphenazinium chloride (safranine T (ST)) by halides and pseudo halides in binary solvent mixtures was investigated by steady-state fluorescence spectroscopy. Several parameters, such as dielectric constant, viscosity coefficient, and fluorescence quantum yield have been investigated as a function of solvent compositions. In mixed solvents ST has been used as a probe for studying the microheterogenity of the mixture. The preferential solvations around ST in the excited state were determined. The Stern-Volmer quenching constants at different compositions of solvent mixtures were determined and the rational analysis of the results was attempted.  相似文献   

5.
The phenomenon of excited state twisted intramolecular charge transfer (TICT) process in N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) has been reported on the basis of steady-state absorption and fluorescence spectroscopy in combination with quantum chemical calculations. The absorption and fluorescence characteristics of DMANAN in solvents of different polarity reveal the presence of a single species in the ground state which forms the intramolecular charge transfer state upon photoexcitation. The observed dual fluorescence is assigned to a high-energy emission from the locally excited or the Franck-Condon state and the red-shifted emission from the charge transfer (CT) state. In polar protic solvents, hydrogen-bonding interaction on CT emission has been established from the linear dependency of the position of the low-energy emission maxima on hydrogen-bonding parameter (α). The experimental findings have been correlated with the theoretical results based on TICT model obtained at density functional theory (DFT) level. The theoretical potential energy surface for the first excited state along both the donor and acceptor twist coordinates in the gas phase obtained by time dependent density functional theory (TDDFT) method and in polar solvent by time dependent density functional theory-polarized continuum model (TDDFT-PCM) method predicts well the experimental spectral properties.  相似文献   

6.
Quinoxalin-2(1H)-one and its derived 3-Benzylquinoxalin-2(1H)-one were synthesized and characterized by UV–visible spectroscopy. The changes displayed by the photophysical properties of these molecules in different solvents can be explained in terms of a sum of dielectric polarity and hydrogen bonding effects taking part in the stabilisation of the structure. 3-Benzylquinoxalin-2(1H)-one exhibits two fluorescence emission bands (F a and F n) in very polar solvents and one band (F n) in low polar solvents. These bands are assigned on the basis of the absorption and emission solvent effect. The abnormal fluorescence (F a) observed in very polar solvents is attributed to an intermolecular interaction between solute and solvent molecules in the excited state (exciplex formation).  相似文献   

7.
The photophysical properties of three newly synthesized pyrazoloquinolines, composed of N,N-dimethylaniline as donor subunit and various substituted forms of the acceptor pyrazoloquinoline (DPPQ), were investigated by absorption as well as by stationary and time resolved fluorescence spectroscopy. These compounds show generally highly efficient emission in nonpolar and medium polar solvents; the dipole moment of the emitting state increases and the quantum yield decreases with solvent polarity. These results are explained by state reversion in polar solvents: At low polarities emission originates from a state localized on the DPPQ moiety, whereas in the high-polarity regime the next excited state of charge transfer character, in which an electron is promoted from the amino nitrogen lone pair into an excited orbital of the DPPQ moiety, becomes the fluorescent state. This view is corroborated by semiempirical calculations including the solvent reaction field, low-temperature fluorescence measurements, and the observation of effects of protonation on the spectroscopic and photophysical properties.  相似文献   

8.
3-羟基黄酮在不同极性和酸碱度溶剂中的光谱研究   总被引:2,自引:0,他引:2  
实验观测了3-羟基黄酮(3-HF)在不同极性溶剂中的吸收光谱和荧光光谱,发现在吸收光谱中有3个吸收带,峰值位于300和345 nm的两个吸收带较强,位于415 nm处的吸收带较弱。用345 nm作为激发光,观测到两个荧光带,其中峰值位于400 nm的荧光带为3-HF稀醇式构型的发射,随着溶剂极性的增大其强度增强,峰值位于526 nm的荧光带为3-HF互变异构体的发射,随着溶剂极性的增大其强度减弱,这表明溶剂极性阻碍质子转移的发生。用415 nm的光激发样品,在荧光光谱中发现了3个新荧光谱带,峰值分别位于440,471和515 nm,这3个荧光谱带归属至今未见报道。为了指认这3个荧光谱带,分别观测了3-HF在不同酸碱度溶液的荧光光谱及其吸收光谱,通过对这些光谱的分析研究,指认出荧光峰位于440和471 nm的荧光谱带为3-HF的两种阳离子的发射,峰值位于515 nm的荧光谱带为3-HF的阴离子的发射。  相似文献   

9.
Novel imidazole derivatives were synthesized and its crystal structure has been studied by single crystal XRD analysis. The photophysical properties of these imidazole derivatives were studied in several solvents, which include a wide range of apolar, polar and protic media. The observed lower fluorescence quantum yield may be due to an increase in the non-radiative deactivation rate constant. This is attributed to a loss of planarity in the excited state provided by the non co-planarity of the aryl rings attached to C(2) and N(1) atoms of the imidazole ring. Such a geometrical change in the excited state leads to an important Stokes shift, reducing the reabsorption and reemission effects in the detected emission in highly concentrated solutions. The highest fluorescence quantum yield of the imidazole derivatives are observed in polar media.  相似文献   

10.
Dual fluorescence in N,N-Diethyl-4-nitrosoaniline (DENA) has been studied employing absorption, excitation and emission spectroscopic techniques and computational methods. The absorption and fluorescence spectra of DENA were measured in solvents of various polarities at room temperature. The emission spectra of DENA were found to exhibit a single emission band in non polar solvent (cyclohexane) and in a highly polar solvent (acetonitrile). In the contrary, two emission bands were observed in medium polar solvents (tetrahydrofuran, 1,2-dichloroethane and dichloromethane) whereby the short (local excited; LE) and long (charge transfer; CT) emission maxima correspond to the emission maxima of the compound observed in cyclohexane and acetonitrile solutions, respectively. Moreover, the two emission bands have shown strong excitation wavelength dependence, and area normalization resulted in an iso-emissive point. The two emission maxima were in addition found to correspond to two excitation maxima in 3D fluorescence spectra. Further, two minima were obtained in potential energy surface calculation of DENA. From the experimental and computational results it was concluded that the dual fluorescence may be attributed to the presence of two different ground state structural conformers of DENA in equilibrium that are stabilized through solute-solvent interaction.  相似文献   

11.
The Fluorescence spectroscopic and solvatochromic behavior of Sulfisoxazole, a sulfa drug with antimicrobial activities, in various pure solvents of different polarity and hydrogen bonding capability is reported. The fluorescence emission spectrum of sulfisoxazole was found to be solvent polarity dependent, where a notable red shift in emission maximum was observed with increasing solvent polarity as well as hydrogen bonding capability. The effects of the latter two solvent parameters were quantitatively investigated using the methods of Lippert–Mataga and solvatochromic comparison method (SCM) that is based on the Kamlet-Taft equation. Particularly, the Lippert–Mataga method was applied to estimate the dipole moment of the excited state (μe) upon plotting Stokes shift versus solvent polarizability (Δf), where a value of 11.54 Debye was obtained. On the other hand, applying the multiple regression analysis to the SCM method revealed that solvent polarizability (π*) and hydrogen-bond donor capability (α) approximately equally stabilize sulfisoxazole in the excited state with minor destabilization contribution by the hydrogen-bond acceptor capability (β). These findings revealed that the excited state of sulfisoxazole is stabilized by polar solvents, indicating that this drug molecules exhibit larger dipole moment in the excited state than in the ground state, which in turn implies that a potential intramolecular charge transfer (ICT) occurs after excitation.  相似文献   

12.
p-dimethylaminobenzaldehyde (DMABA) and p-dimethylaminoacetophenone (DMAA) were investigated in nonpolar and polar protic and aprotic solvents over a wide temperature range. The sequence of the lower lying excited states was established. The temperature dependence of the fluorescence yields was interpreted within the irreversible reaction kinetics scheme b1→TICT (twisted internal charge transfer) state. The activation energies and the rate constants were evaluated. Differences between the low-temperature fluorescence or phosphorescence excitation spectra and the absorption spectrum were found to be due to the existence of different rotamers in the ground state. Quantum chemical (INDO) calculations of the energies of electronic transitions, oscillator strengths and dipole moments were performed for flat and twisted conformations of DMABA.  相似文献   

13.
Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S0) and the first excited singlet states (S1). Dication is formed by protonating one of N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pKa values for different prototropic equilibriums were determined in S0 and S1 states and discussed.  相似文献   

14.
通过对香豆素343(C343)在不同溶剂中的稳态吸收光谱、稳态荧光光谱和时间分辨荧光光谱的分析,研究了溶剂对C343的光谱性质的影响,并获得了光谱特性与溶剂极性之间的依赖关系. 吸收光谱峰值的红移随着溶剂极性的增加而发生较小的变化. 然而,荧光光谱的峰值对溶剂的极性却很敏感,并随着溶剂极性参数f(ε,n)的增加呈线性增长. 这是由于C343激发态电荷分布的变化导致了它在极性溶剂中第一激发单重态能级的变化. 用溶剂效应测量法和量子化学计算方法确定了C343最低激发态的偶极矩,这两方法所得的结果一致. C343在不同溶剂中的时间分辨荧光光谱研究表明荧光寿命随着溶剂极性的增加而增加,即从甲苯溶液的3.09 ns线性地增加到水溶液中4.45 ns;荧光寿命延长的根源可归因于C343与氢键给体溶剂之间的分子间氢键相互作用.  相似文献   

15.
The photophysical properties of novel cyclic azacyanine derivatives have been investigated in acetonitrile, N-butyronitrile, methanol, ethanol, DMF and water. Introduction of electron donating or accepting groups on the cyclic azacyanine has a direct impact on the spectroscopic and photophysical properties. Irrespective of the nature of the substitution, azacyanine shows a general solvent relaxation in accordance with Lippert-Mataga’s prediction; however, in protic solvent, specific interactions are encountered. Fluorescence lifetime decay suggests a relaxation in the nanosecond time scale with monoexponential decay in polar solvents and biexponential decay in non polar solvents. The fluorescence lifetime of azacyanines are found to be longer than popular cy3 dyes. An electron donating substituent increases the fluorescence lifetime and influences the radiative process, whereas an electron withdrawing group marginally increases the excited state lifetime but remarkably enhances the radiative process. The fluorescence quantum yield of substituted cyclic azacyanine in water is noted to be at least five fold higher than the popular cy3 dye.  相似文献   

16.
通过考察2-羟基-1-萘甲醛半碳酰腙(HNLSC)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了HNLSC分子在不同溶剂及酸、碱条件下的不同构型,证实了HNLSC具有典型的ESIPT特性。在非极性溶剂中分子主要以分子内氢键的闭式构型存在,这种闭式构型使分子具有ESIPT特性,在环己烷溶剂和高酸度极性溶剂中分子均表现出~415nm的正常荧光和~435nm处的反常ESIPT荧光。在极性质子溶剂中,因溶质和溶剂之间形成了分子间的氢键以及进一步去质子化,HNLSC形成了基态的溶剂化开式构型和离子构型,在吸收光谱中表现出~395nm的离子构型特征吸收。开式构型和离子构型阻断了分子内质子转移途径,因而在荧光光谱中仅表现出一个特征峰。实验进一步通过三乙胺和稀硫酸调节溶液体系的极性和酸度环境,证明在不同溶剂极性和酸度环境下,HNLSC分子不仅存在萘环上羟基变化引起的多种互变异构体间的转化平衡,同时存在—CHN—NH—CO—NH2结构域的烯醇式和酮式结构的相互转化。  相似文献   

17.
The effect of positional substitution of amino group on the ground and excited state dipole moments of quinoline ring has been investigated using solvatochromic shift methods. The excited state dipole moments of 5aminoquinoline (5AQ) and 3aminoquinoline (3AQ) have been estimated from the spectral data in different non-polar, polar aprotic and polar protic solvents using Bakhshiev and Kawski-Chamma-Viallet equations. It has been observed that both grounds as well as excited state dipole moments for 5AQ are higher than those for 3AQ by approximately a factor of two. Higher values of the excited state dipole moments for both 3AQ and 5AQ as compared to corresponding ground state values have been attributed to intramolecular charge transfer processes. The role of specific solute-solvent interaction on excited state dipole moment in addition to the general solvent effects has been discussed.  相似文献   

18.
We have studied the changes undergone by the fluorescence, absorption and excitation spectra of some indole and carbazole derivatives in various solvents (nonpolar, polar and mixtures of nonpolar with polar solvents), at various temperatures, especially at low temperatures. On the basis of these modifications it has been established that both the solvents through specific interactions and the temperature can lead to the formation of new molecular species. It has been observed that these species may appear both in the excited state and in the ground state of the solute. It has been established that in the case of the achievement of some favourable configurations either under the action of solvent or under the combined action of both the solvent and temperature the investigated compounds (with one exception) form an exciplex with n-propylamine.  相似文献   

19.
The fluorescence characteristics of the Schiff bases 2-(3-pyridylmethyliminornethyl)phenol (1), 2-(2 pyridyliminomethyl)phenol (2), N.N-bis(salicylidene)-2,3-pyridinediamine (3), N,N'-bis(salicylidene)-2,6-pyridinediamine (4) and 2-(2-amino-4-methoxymethyl-6-methyl-3-pyridylmethyliminomethyl)phenol (5) were studied in various solvents at different pH values. Corresponding quantum efficiencies were determined. Compound 1, which showed a tendency towards tautomeric mterconversion to ketoamine in polar protic solvents, was not fluorescent at pH < 8. The fluorescence of other compounds was very sensitive to solvent polarity and the pH of the medium. Compounds 2-4, preferably present as enolimines in all solvents, were not fluorescent in non-polar and moderately polar solvents, whereas weak emission was observed in polar solvents, like methanol, dimethylformamide and dioxane/water 1/1 (0.001 < Q < 0.072). A significant increase in Stokes shifts and in quantum efficiencies was noted as a result of increasing polarity of dioxane/water mixtures, indicating specific interactions with polar water molecules. The emission was promoted at acidic pH values where a pyridinium cation was formed (0.061 < Q < 0.519, in dioxane/water 1/1 at pH 3.4). Compound 5, which was a tautomeric mixture of enoiimine and cyclic diamine in all solvents, was fluorescent in polar as well as in non-polar media. The quantum efficiency varied dependent on the solvent and pH (0.023 <Q< 0.435). The cyclic diamine, i. e. the more rigid structure was supposed to be responsible for the fluorescence in non-polar and aprotic solvents as well as at neutral, and weakly basic pH values.  相似文献   

20.
Rotational diffusion of coumarin 6 (C6) laser dye has been examined in n-decane and methanol as a function of temperature. The rotational reorientation of this probe has been measured in these solvents. It is observed that the decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule. The molecule C6 has long reorientation times in n-decane solvent as compared to methanol over all temperatures. It is found that the coumarin 6 rotates slower in n-decane than in methanol especially at higher values of viscosity over temperature. Two methods are chosen to determine the ground state and excited state dipole moments. The change in dipole moments is estimated from Bakhshiev-Chamma-Viallet equations and, the ground and excited state dipole moments from Kawski et al. equations, by using the variations of the Stokes shifts with the dielectric constant and refractive index of the solvent. Our results are quite reliable which are solvatochromic correlation obtained using solvent polarity functions. The reported results show that excited state dipole moment is greater than ground state dipole moment, which indicates that the excited state is more polar than the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号