首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem.  相似文献   

2.
The behaviour of β-blockers in a reversed-phase liquid chromatographic (RPLC) column with mobile phases containing a short-chain alcohol (methanol, ethanol or 1-propanol), with and without the surfactant sodium dodecyl sulphate (SDS), was explored. Two surfactant-mediated RPLC modes were studied, where the mobile phases contained either micelles or only surfactant monomers at high concentration. Acetonitrile was also considered for comparison purposes. A correlation was found between the effects of the organic solvent on micelle formation (monitored by the drop weight procedure) and on the nature of the chromatographic system (as revealed by the retention, elution strength and peak shape of β-blockers). When SDS is added to the mobile phase, the free surfactant monomers bind the C18 bonded chains on the stationary phase, forming an anionic layer, which attracts strongly the cationic β-blockers. The retention is modified as a consequence of the solving power of the organic solvent, micelles and surfactant monomers. The molecules of organic solvent bind the micelles, modify their shape, and may avoid their formation. They also bind the monomers of surfactant, desorbing them from the stationary phase, which affects the retention. The remaining surfactant covers the free silanols on the siliceous support, avoiding the interaction with the cationic solutes. The retention of β-blockers results from a combination of electrostatic and hydrophobic interactions, the latter being weaker compared to the hydro-organic system. The peak efficiencies and asymmetries are excellent tools to probe the surfactant layer on the stationary phase in an SDS/organic solvent system. The peaks will be nearly symmetrical wherever enough surfactant coats the stationary phase (up to 60% methanol, 40% ethanol, 35% 1-propanol, and 50% acetonitrile).  相似文献   

3.
The silica-based stationary phases with favorable physical characteristics are the most popular in liquid chromatography. However, there are several problems with silica-based materials: severe peak tailing in the chromatography of basic compounds, non-reproducibility for the same chemistry columns, and limited pH stability. Ionic liquids (ILs) as mobile phase components can reduce peak tailing by masking residual free silanol groups. The chromatographic behavior of some alkaloids from different classes was studied on C18, phenyl, and pentafluorophenyl columns with different kinds and concentrations of ionic liquids as additives to aqueous mobile phases. Ionic liquids with different alkyl substituents on different cations or with different counterions as eluent additives were investigated. The addition of ionic liquids has great effects on the separation of alkaloids: decrease in band tailing, increase in system efficiency, and improved resolution. The retention, separation selectivity, and sequence of alkaloid elution were different when using eluents containing various ILs. The increase of IL concentration caused an increase in silanol blocking, thus conducted to decrease the interaction between alkaloid cations and free silanol groups, and caused a decrease of alkaloids retention, improvement of peak symmetry, and increase of theoretical plate number in most cases. The effect of ILs on stationary phases with different properties was also examined. The different properties of stationary phases resulted in differences in analyte retention, separation selectivity, peak shape, and system efficiency. The best shape of peaks and the highest theoretical plate number for most investigated alkaloids in mobile phases containing IL was obtained on pentafluorophenyl (PFP) phase.  相似文献   

4.
The behaviour of a reversed-phase liquid chromatographic (RPLC) system (i.e. elution order, resolution and analysis time), used in the analysis of β-blockers with acetonitrile–water mobile phases, changes drastically upon addition of an anionic surfactant (sodium dodecyl sulphate, SDS). Surfactant monomers cover the alkyl-bonded phase in different extent depending on the concentration of both modifiers, in the ranges 1 × 10−3–0.15 M SDS and 5–50% acetonitrile. Meanwhile, the surfactant is dissolved in the mobile phase as free monomers, associated in small clusters or forming micelles. Four characteristic RPLC modes are yielded, with transition regions between them: hydro-organic, micellar, and low and high submicellar. The mobile phases in the two latter modes contain a concentration of SDS below or well above the critical micellar concentration (CMC) in water (i.e. 8 × 10−3 M), and more than 30% acetonitrile. High submicellar RPLC appeared as the most promising mode, as it allowed full resolution of the β-blockers in practical times, while these were unresolved or highly retained in the other RPLC modes. The strong attraction of the cationic solutes to the anionic SDS makes a direct transfer mechanism between surfactant molecules in the stationary and mobile phases likely.  相似文献   

5.
Surfactants added to the mobile phases in reversed-phase liquid chromatography (RPLC) give rise to a modified stationary phase, due to the adsorption of surfactant monomers. Depending on the surfactant nature (ionic or non-ionic), the coated stationary phase can exhibit a positive net charge, or just change its polarity remaining neutral. Also, micelles in the mobile phase introduce new sites for solute interaction. This affects the chromatographic behavior, especially in the case of basic compounds. Two surfactants of different nature, the non-ionic Brij-35 and the anionic sodium dodecyl sulfate (SDS) added to water or aqueous-organic mixtures, are here compared in the separation of basic compounds (β-blockers and tricyclic antidepressants). The reversible/irreversible adsorption of the monomers of both surfactants on the stationary phase was examined. The changes in the nature of the chromatographic system using different columns and chromatographic conditions were followed based on the changes in retention and peak shape. The study revealed that Brij-35 is suitable for analyzing basic compounds of intermediate polarity, using "green chemistry", since the addition of an organic solvent is not needed and Brij-35 is a biodegradable surfactant. In contrast, RPLC with hydro-organic mixtures or mobile phases containing SDS required high concentrations of organic solvents.  相似文献   

6.
The effects of several ionic liquids (ILs) as mobile‐phase additives in HPLC with fluorescence and UV–Vis detection for the determination of six heterocyclic aromatic amines were evaluated using two different C18 stationary phases with moderate silanol activity. The studied ILs were 1‐butyl‐3‐methylimidazolium tetrafluoroborate, 1‐hexyl‐3‐methylimidazolium tetrafluoroborate and 1‐methyl‐3‐octylimidazolium tetrafluoroborate. The optical behaviour of heterocyclic aromatic amines in presence of ILs was studied and the silanol‐suppressing potency of ILs was evaluated for the two stationary phases studied. Several chromatographic parameters were evaluated in the presence or absence of ILs, or using triethylamine, the most common mobile‐phase additive. The best results were achieved using 1 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as mobile‐phase additive and NovaPak® column. In these conditions and with 18% of ACN in the mobile phase, analytical performance of the chromatographic methods using fluorescence and UV–Vis were evaluated, obtaining good precision in all cases (RSD lower than 6.6%) and low LOD (0.001–0.147 μg/mL with UV–Vis and 0.001–0.006 ng/mL with fluorescence detection).  相似文献   

7.
Abstract

Alkyl-modified silica (RSi) and polystyrenedivinylbenzene (PRP-1) stationary phases are compared for the chromatographic separation of inorganic analyte anions and cations using hydro-phobic ions of opposite charge as mobile phase additives. Tetra-alkylammonium salts were used for anion separations and alkyl sulfonate salts for cation separations. Two major equilibria influence the retention of analyte ions on PRP-1. These are: retention of the hydrophobic ion on PRP-1 and an ion exchange selectivity between the hydrophobic counterion and the analyte ion. When using RSi retention is also influenced by ion exchange at residual silanol groups, which act as weak cation exchange sites. Mobile and stationary phase variables that influence analyte retention are identified. Optimization of these provides favorable eluting conditions for the separation of inorganic ionic analytes. Of particular interest is the potential use of PRP-1 and RSi columns for the separation of inorganic cations; conditions for the separation of alkali metals and alkaline earths are discussed.  相似文献   

8.
Although there have been numerous studies on the use of ionic liquids (IL) as solvents for synthesis and catalysis, there are many potential new fields for their application. The number of studies dealing with the use of ILs as additives to the mobile phase in LC and CZE and as a stationary phases in GC is constantly increasing. The main goal of the present paper is to gather together studies concerning the use of ILs in chromatographic techniques. The application of these substances as stationary phases, mobile phase additives and electroosmotic flow modifiers is discussed. Conversely, the application of separation methods in the analysis of ILs is also the subject of this review.  相似文献   

9.
The retention behavior of solutes in reversed phase chromatographic system, especially containing hydrophobic ions in mobile phase, has been studied by many authors, but the silanol effect on alkyl-modified silica surface was neglected. Actually, because of stereo hindrance, numerous unreacted (residual) silanol groups, which can interact with some solutes, are left within the bonded phase after the silica surface has be modified. A mixed retention model, which considers adsorbed hydrophobic ions on the bonded phase can decrease the hydrophobicity and mask residual silanol groups, is proposed, based on hydrophobic distribution of neutral solutes, ion-pair distribution of ionic solutes and coulombic attraction between cationic solutes and the dissociated silanols.  相似文献   

10.
Wu R  Zou H  Ye M  Lei Z  Ni J 《Electrophoresis》2001,22(3):544-551
A mode of capillary electrochromatography (CEC), based on the dynamical adsorption of surfactants on the uncharged monolithic stationary phases has been developed. The monolithic stationary phase, obtained by the in situ polymerization of butyl methacrylate with ethylene dimethacrylate, was dynamically modified with an ionic surfactant such as the long-chain quaternary ammonium salt of cetyltrimethylammonium bromide (CTAB) and long-chain sodium sulfate of sodium dodecyl sulfate (SDS). The ionic surfactant was adsorbed on the surface of polymeric monolith by hydrophobic interaction, and the ionic groups used to generate the electroosmotic flow (EOF). The electroosmotic mobility through these capillary columns increased with increasing the content of ionic surfactants in the mobile phase. In this way, the synthesis of the monolithic stationary phase with binary monomers can be controlled more easily than that with ternary monomers, one of which should be an ionic monomer to generate EOF. Furthermore, it is more convenient to change the direction and magnitude of EOF by changing the concentration of cationic or anionic surfactants in this system. An efficiency of monolithic capillary columns with more than 140000 plates per meter for neutral compounds has been obtained, and the relative standard deviations observed for to and retention factors of neutral solutes were about 0.22% and less than 0.56% for ten consecutive runs, respectively. Effects of mobile phase composition on the EOF of the column and the retention values of the neutral solutes were investigated. Simultaneous separation of basic, neutral and acidic compounds has been achieved.  相似文献   

11.
田玲  姚成  边敏 《分析测试学报》2016,35(11):1471-1475
以常用流动相添加剂三乙胺作为对照,建立了以离子液体为流动相添加剂,分离钩藤药材中钩藤碱和异钩藤碱的高效液相色谱方法。以分离度及相关色谱参数为指标,选择了离子液体中咪唑阳离子烷基链长度及阴离子的种类。并分别考察了咪唑阳离子烷基链长度、离子液体浓度、流动相pH值和流动相比例对钩藤碱和异钩藤碱分离的影响,初步探讨了离子液体的分离机理。结果显示,咪唑阳离子的烷基链越长,阴离子的离子液体序列越高,分离效果越好,即[HMIM][BF_4]为最优的流动相添加剂。当[HMIM][BF_4]浓度为16 mmol/L,流动相pH值为3.0,甲醇比例为37%时,钩藤碱和异钩藤碱能够实现基线分离,满足样品分离测定的需求。  相似文献   

12.
In the present work, we study the effect of mobile phase anionic additive type and concentration on the selectivity, efficiency, and sample loading capacity of cationic drugs in reversed-phase liquid chromatography (RPLC). The type and concentration of an anionic additive are known to have a strong effect on the absolute retention of cations in RPLC; in contrast they have only a small effect on the selectivity of one cation relative to a second as seen here. This is mainly due to the similarity of the ion pair formation constants between the selected cations. The limiting retention factors of cations (i.e. the retention factor of the fully ion-paired analyte at very high additive concentration) are roughly proportional to their inherent hydrophobicities (i.e. the retention factor of the analyte in the absence of the anionic additive). With a given anion, differences in ion pairing strength between the solutes are required for effective selectivity adjustment. Based on the Wade–Lucy–Carr (W–L–C) kinetic model of overload peaks, the approach we developed in our previous work was used to study the effect of mobile phase anionic additives type and concentration on the limiting plate count (N0) and sample loading capacity (ω0.5) of various cationic drugs. Under linear chromatographic conditions, where the analyte exhibits its smallest peak width and thus maximum apparent plate count, the type and concentration of anionic additives have almost no effect on peak width. In comparison to neutral analytes the sorption isotherms of cationic species are very easily overloaded even when many fewer moles of cations as compared to neutrals are injected. We showed that different anionic additives profoundly affect the cations’ “overload profiles” (i.e. plots of plate count versus amount injected) by changing the sample loading capacities. The increase in sample loading capacities with different anions show the same order as the extent of ion pairing between the anions and the basic analytes. The detrimental effect of sample overloading on peak width can be greatly diminished by using either a stronger ion pairing agent or a higher concentration of a given ion pairing agent. Both effects operate by increasing the sample loading capacity, thereby allowing more solute to be injected. We believe that the increase in sample loading capacity described above is due in part to the increase in the number of ion-exchange sites as more anions sorb to the stationary phase. At the same time, the formation of a neutral ion-paired analyte also increases the amount of cation which can be loaded onto the stationary phase by allowing a greater fraction of the analyte to be present in the stationary phase as an electrically neutral (i.e. ion-paired) species.  相似文献   

13.
The addition of the anionic surfactant sodium dodecyl sulphate (SDS) to hydro-organic mixtures of methanol, ethanol, propanol or acetonitrile with water yielded enhanced peak shape (i.e. increased efficiencies and symmetrical peaks) for a group of basic drugs (β-blockers) chromatographed with a Kromasil C18 column. The effect can be explained by the thin layer of surfactant associated to the hydrocarbon chain on the stationary phase in the presence of the organic solvents, which covers the free silanols on the siliceous support avoiding their interaction with the cationic basic drugs. These instead interact with the anionic head of the surfactant increasing their retention and allowing a more facile mass transfer. The peak shape behaviour with the four organic solvents (methanol, ethanol, propanol and acetonitrile) was checked in the presence and absence of SDS. The changes in peak broadening rate and symmetry inside the chromatographic column were assessed through the construction of peak half-width plots (linear relationships between the left and right half-widths at 10% peak height versus the retention time). The examination of the behaviour for a wide range of compositions indicated that the effect of acetonitrile in the presence of SDS is different from ethanol and propanol, which behave similarly. Acetonitrile seems to be superior to the alcohols in terms of peak shape, which can be interpreted by the larger reduction in the adsorbed surfactant layer on the C18 column. However, the decreased efficiencies observed at increasing surfactant concentration in the mobile phase should be explained by the reduction in retention times, more than by a change in the stationary phase nature.  相似文献   

14.
The chromatographic behavior (retention, elution strength, efficiency, peak asymmetry and selectivity) of some aromatic diamines in the presence of methanol with or without anionic surfactant SDS in the four different reversed phased liquid chromatographic (RPLC) modes, i.e., hydro-organic, micellar (MLC), low submicellar (LSC) and high submicellar (HSC), was investigated. In the three surfactant-mediated modes, the surfactant monomers coat the stationary phase even up to 70 % methanol; this results in the suppression of peak tailing (by masking the silanol groups on the stationary phase). In MLC and HSC, the solute retention decreases by increasing the surfactant concentration, while this situation was reversed in LSC. In the region between MLC and HSC modes (25–50 % methanol), retention of late eluting solutes was increased by increasing methanol content which is seemingly due to disaggregation of SDS micelles. Changes in selectivity were observed after changing the concentrations of SDS and methanol, in a greater extent when concentration of SDS was changed. Among the four studied RPLC modes, HSC showed the best efficiency with nearly symmetrical peaks. Prediction of retention of solutes in HSC based on a mechanistic retention model combined with Pareto-optimality method allowed the full resolution of target diamines in practical analysis times.  相似文献   

15.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

16.
黄虎  金京玉  李元宰 《色谱》2009,27(4):467-471
考察了多糖类手性固定相在含有酸性或碱性添加剂的流动相下高效液相色谱法拆分β受体阻滞剂对映体的效果。色谱条件: 流动相为10%~30%(体积分数,下同)乙醇-正己烷(含0.1%三氟乙酸)和10%~30%乙醇-正己烷(含0.1%三乙胺),流速1.0 mL/min,紫外检测波长254 nm。结果表明,在直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)衍生物手性固定相(Chiralpak AD和Chiralpak IA)上拆分β受体阻滞剂对映体,酸性添加剂的流动相体系与碱性添加剂的流动相体系相比,碱性添加剂的流动相的拆分效果比酸性添加剂的流动相要好。而在纤维素-三(3,5-二甲基苯基氨基甲酸酯)衍生物的手性固定相(Chiralcel OD和Chiralpak IB)上分离β受体阻滞剂,比较酸性添加剂的流动相与碱性添加剂的流动相的拆分效果,发现酸性添加剂的流动相条件下对映体的保留减弱,但对映体的选择性增大,特别是在Chiralcel OD上,酸性添加剂的流动相体系对对映体的选择性非常理想,而且随着流动相中酸性添加剂含量的增加,β受体阻滞剂对映体的分离效果更佳。  相似文献   

17.
A comparative study of peak shape, elution behavior, and resolution of 16 beta-blockers (acebutolol, alprenolol, atenolol, bisoprolol, carteolol, celiprolol, esmolol, labetalol, metoprolol, nadolol, oxprenolol, pindolol, practolol, propranolol, sotalol, and timolol) chromatographed with hybrid mobile phases of triethylamine (TEA)-acetonitrile and sodium dodecyl sulfate (SDS)-propanol is performed using conventional reversed-phase columns and isocratic elution. Both solvent modifiers (TEA and SDS) prevent the interaction of the basic drugs with the alkyl-bonded phase. However, the protection mechanisms of silanols on the packing are different. Whereas TEA associates with the silanol sites (blocking ion-exchange processes or repelling the solutes), the long hydrophobic chain of SDS is inserted in the bonded organic layer with the sulfate group protruding outside, which makes the stationary phase negatively charged. The effects of TEA, acetonitrile, SDS, and propanol on the elution strength, efficiency, peak asymmetry, and resolution are examined under an experimental design basis that is assisted by computer simulation to reach more general conclusions. The combination of improved peak shapes, larger selectivity, and a smaller range in retention among compounds of extreme polarity leads to the observation that a greater number of beta-blockers can be resolved with a hybrid micellar system.  相似文献   

18.
The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of β-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the β-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the β-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic β-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log kw values (extrapolated retention to pure water) were correlated with the molecular (log Po/w) and apparent (log Papp) octanol–water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity.  相似文献   

19.
The synthesis and characterization of a zwitterionic stationary phase bonded onto microparticulate silica is described. The bonded zwitterionic phase was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and quantitative analysis of the ligands by high performance liquid chromatography (HPLC) following chemical cleavage from the silica backbone. Chromatographic evaluation of this novel bonded phase indicates that it functions as a weak cation exchanger at pH values above 4.5, an anion exchanger at pH values below 7, and as a zwitterionic phase between these two values. The simultaneous separation of a mixture of cationic, anionic and zwitterionic solutes with this novel bonded phase is shown. Using nucleotides as model compounds, a correlation was developed between maximum solute retention and the pH values corresponding to maximum solute/stationary phase zwitterion overlap. The possibility for a quadrupolar retention mechanism of the bonded zwitterionic phase for zwitterionic solutes is explored.  相似文献   

20.
The use of the tetrabutylammonium additive was investigated in the ultra‐high performance reversed‐phase liquid chromatographic elution of basic molecules of pharmaceutical interest. When added to the mobile phase at low pH, the hydrophobic tetrabutylammonium cation interacts with the octadecyl chains and with the residual silanols, thus imparting a positive charge to the stationary phase, modulating retention and improving peak shape of protonated basic solutes. Two sources of additive were tested: a mixture of tetrabutylammonium hydroxide/trifluoroacetic acid and tetrabutylammonium hydrogen sulfate. Retention and peak shape of 11 basic pharmaceutical compounds were evaluated on commercially available ultra‐fast columns packed with octadecyl stationary phases (Ascentis Express C18 2.0 µm, Acquity BEH C18 1.7 µm, Titan C18 1.9 µm). All columns benefit from the use of additive, especially tetrabutylammonium hydrogen sulfate, providing very symmetric peaks with reasonable retention times. Focusing on the probe compounds amitriptyline and sertraline, efficiency and asymmetry values were investigated at increasing retention factor. The trend is very different to that obtained in reversed‐phase conditions and the effect lies in the complex molecular interaction mechanisms based on hydrophobic and ion exchange interactions as well as electrostatic repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号